Generalize the model to talk about termination
This commit is contained in:
parent
ec03826083
commit
bf2a369824
2 changed files with 213 additions and 80 deletions
|
@ -1526,12 +1526,48 @@ Proof.
|
|||
- hauto lq:on inv:RPar.R ctrs:RPar.R.
|
||||
Qed.
|
||||
|
||||
Function tstar' {n} (a : Tm n) :=
|
||||
match a with
|
||||
| VarTm i => a
|
||||
| Abs a => Abs (tstar' a)
|
||||
| App (Abs a) b => subst_Tm (scons (tstar' b) VarTm) (tstar' a)
|
||||
| App a b => App (tstar' a) (tstar' b)
|
||||
| Pair a b => Pair (tstar' a) (tstar' b)
|
||||
| Proj p (Pair a b) => if p is PL then (tstar' a) else (tstar' b)
|
||||
| Proj p a => Proj p (tstar' a)
|
||||
| TBind p a b => TBind p (tstar' a) (tstar' b)
|
||||
| Bot => Bot
|
||||
| Univ i => Univ i
|
||||
end.
|
||||
|
||||
Lemma RPar'_triangle n (a : Tm n) : forall b, RPar'.R a b -> RPar'.R b (tstar' a).
|
||||
Proof.
|
||||
apply tstar'_ind => {n a}.
|
||||
- hauto lq:on inv:RPar'.R ctrs:RPar'.R.
|
||||
- hauto lq:on inv:RPar'.R ctrs:RPar'.R.
|
||||
- hauto lq:on use:RPar'.cong, RPar'.refl ctrs:RPar'.R inv:RPar'.R.
|
||||
- hauto lq:on rew:off ctrs:RPar'.R inv:RPar'.R.
|
||||
- hauto lq:on rew:off inv:RPar'.R ctrs:RPar'.R.
|
||||
- hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'.
|
||||
- hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'.
|
||||
- hauto lq:on inv:RPar'.R ctrs:RPar'.R.
|
||||
- hauto lq:on inv:RPar'.R ctrs:RPar'.R.
|
||||
- hauto lq:on inv:RPar'.R ctrs:RPar'.R.
|
||||
- hauto lq:on inv:RPar'.R ctrs:RPar'.R.
|
||||
Qed.
|
||||
|
||||
Lemma RPar_diamond n (c a1 b1 : Tm n) :
|
||||
RPar.R c a1 ->
|
||||
RPar.R c b1 ->
|
||||
exists d2, RPar.R a1 d2 /\ RPar.R b1 d2.
|
||||
Proof. hauto l:on use:RPar_triangle. Qed.
|
||||
|
||||
Lemma RPar'_diamond n (c a1 b1 : Tm n) :
|
||||
RPar'.R c a1 ->
|
||||
RPar'.R c b1 ->
|
||||
exists d2, RPar'.R a1 d2 /\ RPar'.R b1 d2.
|
||||
Proof. hauto l:on use:RPar'_triangle. Qed.
|
||||
|
||||
Lemma RPar_confluent n (c a1 b1 : Tm n) :
|
||||
rtc RPar.R c a1 ->
|
||||
rtc RPar.R c b1 ->
|
||||
|
@ -2331,7 +2367,7 @@ Proof. hauto lq:on unfold:join use:Pars.substing. Qed.
|
|||
Fixpoint ne {n} (a : Tm n) :=
|
||||
match a with
|
||||
| VarTm i => true
|
||||
| TBind _ A B => nf A && nf B
|
||||
| TBind _ A B => false
|
||||
| Bot => false
|
||||
| App a b => ne a && nf b
|
||||
| Abs a => false
|
||||
|
|
|
@ -13,12 +13,15 @@ Definition ProdSpace {n} (PA : Tm n -> Prop)
|
|||
|
||||
Definition SumSpace {n} (PA : Tm n -> Prop)
|
||||
(PF : Tm n -> (Tm n -> Prop) -> Prop) t : Prop :=
|
||||
exists a b, rtc RPar.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
|
||||
exists a b, rtc RPar'.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
|
||||
|
||||
Definition BindSpace {n} p := if p is TPi then @ProdSpace n else SumSpace.
|
||||
|
||||
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
|
||||
Inductive InterpExt {n} i (I : nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) -> Prop :=
|
||||
| InterpExt_Ne A :
|
||||
ne A ->
|
||||
⟦ A ⟧ i ;; I ↘ wne
|
||||
| InterpExt_Bind p A B PA PF :
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
(forall a, PA a -> exists PB, PF a PB) ->
|
||||
|
@ -30,7 +33,7 @@ Inductive InterpExt {n} i (I : nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) ->
|
|||
⟦ Univ j ⟧ i ;; I ↘ (I j)
|
||||
|
||||
| InterpExt_Step A A0 PA :
|
||||
RPar.R A A0 ->
|
||||
RPar'.R A A0 ->
|
||||
⟦ A0 ⟧ i ;; I ↘ PA ->
|
||||
⟦ A ⟧ i ;; I ↘ PA
|
||||
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
|
||||
|
@ -59,6 +62,7 @@ Lemma InterpExt_lt_impl n i I I' A (PA : Tm n -> Prop) :
|
|||
Proof.
|
||||
move => hI h.
|
||||
elim : A PA /h.
|
||||
- hauto q:on ctrs:InterpExt.
|
||||
- hauto lq:on rew:off ctrs:InterpExt.
|
||||
- hauto q:on ctrs:InterpExt.
|
||||
- hauto lq:on ctrs:InterpExt.
|
||||
|
@ -90,8 +94,8 @@ Qed.
|
|||
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
|
||||
|
||||
Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n):
|
||||
RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
|
||||
Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed.
|
||||
RPar'.R a b -> RPar'.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
|
||||
Proof. hauto l:on inv:option use:RPar'.substing, RPar'.refl. Qed.
|
||||
|
||||
Lemma InterpExt_Bind_inv n p i I (A : Tm n) B P
|
||||
(h : ⟦ TBind p A B ⟧ i ;; I ↘ P) :
|
||||
|
@ -104,12 +108,22 @@ Proof.
|
|||
move E : (TBind p A B) h => T h.
|
||||
move : A B E.
|
||||
elim : T P / h => //.
|
||||
- move => //= *. scongruence.
|
||||
- hauto l:on.
|
||||
- move => A A0 PA hA hA0 hPi A1 B ?. subst.
|
||||
elim /RPar.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst.
|
||||
elim /RPar'.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst.
|
||||
hauto lq:on ctrs:InterpExt use:RPar_substone.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_Ne_inv n i A I P
|
||||
(h : ⟦ A : Tm n ⟧ i ;; I ↘ P) :
|
||||
ne A ->
|
||||
P = wne.
|
||||
Proof.
|
||||
elim : A P / h => //=.
|
||||
qauto l:on ctrs:prov inv:prov use:nf_refl.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_Univ_inv n i I j P
|
||||
(h : ⟦ Univ j : Tm n ⟧ i ;; I ↘ P) :
|
||||
P = I j /\ j < i.
|
||||
|
@ -117,8 +131,9 @@ Proof.
|
|||
move : h.
|
||||
move E : (Univ j) => T h. move : j E.
|
||||
elim : T P /h => //.
|
||||
- move => //= *. scongruence.
|
||||
- hauto l:on.
|
||||
- hauto lq:on rew:off inv:RPar.R.
|
||||
- hauto lq:on rew:off inv:RPar'.R.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_Bind_nopf n p i I (A : Tm n) B PA :
|
||||
|
@ -155,53 +170,79 @@ Proof.
|
|||
Qed.
|
||||
|
||||
Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) :
|
||||
RPar.R A B ->
|
||||
RPar'.R A B ->
|
||||
⟦ B ⟧ i ;; I ↘ P.
|
||||
Proof.
|
||||
move : B.
|
||||
elim : A P / h; auto.
|
||||
- hauto lq:on use:nf_refl ctrs:InterpExt.
|
||||
- move => p A B PA PF hPA ihPA hPB hPB' ihPB T hT.
|
||||
elim /RPar.inv : hT => //.
|
||||
elim /RPar'.inv : hT => //.
|
||||
move => hPar p0 A0 A1 B0 B1 h0 h1 [? ?] ? ?; subst.
|
||||
apply InterpExt_Bind; auto => a PB hPB0.
|
||||
apply : ihPB; eauto.
|
||||
sfirstorder use:RPar.cong, RPar.refl.
|
||||
- hauto lq:on inv:RPar.R ctrs:InterpExt.
|
||||
sfirstorder use:RPar'.cong, RPar'.refl.
|
||||
- hauto lq:on inv:RPar'.R ctrs:InterpExt.
|
||||
- move => A B P h0 h1 ih1 C hC.
|
||||
have [D [h2 h3]] := RPar_diamond _ _ _ _ h0 hC.
|
||||
have [D [h2 h3]] := RPar'_diamond _ _ _ _ h0 hC.
|
||||
hauto lq:on ctrs:InterpExt.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUnivN_preservation n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) :
|
||||
RPar.R A B ->
|
||||
RPar'.R A B ->
|
||||
⟦ B ⟧ i ↘ P.
|
||||
Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed.
|
||||
|
||||
Lemma InterpExt_back_preservation_star n i I (A : Tm n) B P (h : ⟦ B ⟧ i ;; I ↘ P) :
|
||||
rtc RPar.R A B ->
|
||||
rtc RPar'.R A B ->
|
||||
⟦ A ⟧ i ;; I ↘ P.
|
||||
Proof. induction 1; hauto l:on ctrs:InterpExt. Qed.
|
||||
|
||||
Lemma InterpExt_preservation_star n i I (A : Tm n) B P (h : ⟦ A ⟧ i ;; I ↘ P) :
|
||||
rtc RPar.R A B ->
|
||||
rtc RPar'.R A B ->
|
||||
⟦ B ⟧ i ;; I ↘ P.
|
||||
Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed.
|
||||
|
||||
Lemma InterpUnivN_preservation_star n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) :
|
||||
rtc RPar.R A B ->
|
||||
rtc RPar'.R A B ->
|
||||
⟦ B ⟧ i ↘ P.
|
||||
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed.
|
||||
|
||||
Lemma InterpUnivN_back_preservation_star n i (A : Tm n) B P (h : ⟦ B ⟧ i ↘ P) :
|
||||
rtc RPar.R A B ->
|
||||
rtc RPar'.R A B ->
|
||||
⟦ A ⟧ i ↘ P.
|
||||
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed.
|
||||
|
||||
Function hfb {n} (A : Tm n) :=
|
||||
match A with
|
||||
| TBind _ _ _ => true
|
||||
| Univ _ => true
|
||||
| _ => ne A
|
||||
end.
|
||||
|
||||
Inductive hfb_case {n} : Tm n -> Prop :=
|
||||
| hfb_bind p A B :
|
||||
hfb_case (TBind p A B)
|
||||
| hfb_univ i :
|
||||
hfb_case (Univ i)
|
||||
| hfb_ne A :
|
||||
ne A ->
|
||||
hfb_case A.
|
||||
|
||||
Derive Dependent Inversion hfb_inv with (forall n (a : Tm n), hfb_case a) Sort Prop.
|
||||
|
||||
Lemma ne_hfb {n} (A : Tm n) : ne A -> hfb A.
|
||||
Proof. case : A => //=. Qed.
|
||||
|
||||
Lemma hfb_caseP {n} (A : Tm n) : hfb A -> hfb_case A.
|
||||
Proof. hauto lq:on ctrs:hfb_case inv:Tm use:ne_hfb. Qed.
|
||||
|
||||
Lemma InterpExtInv n i I (A : Tm n) PA :
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
exists B, hfb B /\ rtc RPar.R A B /\ ⟦ B ⟧ i ;; I ↘ PA.
|
||||
exists B, hfb B /\ rtc RPar'.R A B /\ ⟦ B ⟧ i ;; I ↘ PA.
|
||||
Proof.
|
||||
move => h. elim : A PA /h.
|
||||
- hauto q:on ctrs:InterpExt, rtc use:ne_hfb.
|
||||
- move => p A B PA PF hPA _ hPF hPF0 _.
|
||||
exists (TBind p A B). repeat split => //=.
|
||||
apply rtc_refl.
|
||||
|
@ -211,16 +252,21 @@ Proof.
|
|||
- hauto lq:on ctrs:rtc.
|
||||
Qed.
|
||||
|
||||
Lemma RPars_Pars (A B : Tm n) :
|
||||
rtc RPar.R A B ->
|
||||
Lemma RPar'_Par n (A B : Tm n) :
|
||||
RPar'.R A B ->
|
||||
Par.R A B.
|
||||
Proof. induction 1; hauto lq:on ctrs:Par.R. Qed.
|
||||
|
||||
Lemma RPar's_Pars n (A B : Tm n) :
|
||||
rtc RPar'.R A B ->
|
||||
rtc Par.R A B.
|
||||
Proof. hauto lq:on use:RPar_Par, rtc_subrel. Qed.
|
||||
Proof. hauto lq:on use:RPar'_Par, rtc_subrel. Qed.
|
||||
|
||||
Lemma RPars_join (A B : Tm n) :
|
||||
rtc RPar.R A B -> join A B.
|
||||
Proof. hauto lq:on ctrs:rtc use:RPars_Pars. Qed.
|
||||
Lemma RPar's_join n (A B : Tm n) :
|
||||
rtc RPar'.R A B -> join A B.
|
||||
Proof. hauto lq:on ctrs:rtc use:RPar's_Pars. Qed.
|
||||
|
||||
Lemma bindspace_iff p (PA : Tm n -> Prop) PF PF0 b :
|
||||
Lemma bindspace_iff n p (PA : Tm n -> Prop) PF PF0 b :
|
||||
(forall (a : Tm n) (PB PB0 : Tm n -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
|
||||
(forall a, PA a -> exists PB, PF a PB) ->
|
||||
(forall a, PA a -> exists PB0, PF0 a PB0) ->
|
||||
|
@ -242,21 +288,68 @@ Proof.
|
|||
hauto lq:on rew:off.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_Join i I (A B : Tm n) PA PB :
|
||||
Lemma ne_prov_inv n (a : Tm n) :
|
||||
ne a -> exists i, prov (VarTm i) a /\ extract a = VarTm i.
|
||||
Proof.
|
||||
elim : n /a => //=.
|
||||
- hauto lq:on ctrs:prov.
|
||||
- hauto lq:on rew:off ctrs:prov b:on.
|
||||
- hauto lq:on ctrs:prov.
|
||||
Qed.
|
||||
|
||||
Lemma join_bind_ne_contra n p (A : Tm n) B C :
|
||||
ne C ->
|
||||
join (TBind p A B) C -> False.
|
||||
Proof.
|
||||
move => hC [D [h0 h1]].
|
||||
move /pars_pi_inv : h0 => [A0 [B0 [h2 [h3 h4]]]].
|
||||
have [i] : exists i, prov (VarTm i) C by sfirstorder use:ne_prov_inv.
|
||||
move => h.
|
||||
have {}h : prov (VarTm i) D by eauto using prov_pars.
|
||||
have : extract D = VarTm i by sfirstorder use:prov_extract.
|
||||
congruence.
|
||||
Qed.
|
||||
|
||||
Lemma join_univ_ne_contra n i C :
|
||||
ne C ->
|
||||
join (Univ i : Tm n) C -> False.
|
||||
Proof.
|
||||
move => hC [D [h0 h1]].
|
||||
move /pars_univ_inv : h0 => ?.
|
||||
have [j] : exists i, prov (VarTm i) C by sfirstorder use:ne_prov_inv.
|
||||
move => h.
|
||||
have {}h : prov (VarTm j) D by eauto using prov_pars.
|
||||
have : extract D = VarTm j by sfirstorder use:prov_extract.
|
||||
congruence.
|
||||
Qed.
|
||||
|
||||
#[export]Hint Resolve join_univ_ne_contra join_bind_ne_contra join_univ_pi_contra join_symmetric join_transitive : join.
|
||||
|
||||
Lemma InterpExt_Join n i I (A B : Tm n) PA PB :
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
⟦ B ⟧ i ;; I ↘ PB ->
|
||||
join A B ->
|
||||
PA = PB.
|
||||
Proof.
|
||||
move => h. move : B PB. elim : A PA /h.
|
||||
- move => A hA B PB /InterpExtInv.
|
||||
move => [B0 []].
|
||||
move /hfb_caseP. elim/hfb_inv => _.
|
||||
+ move => p A0 B1 ? [/RPar's_join h0 h1] h2. subst. exfalso.
|
||||
eauto with join.
|
||||
+ move => ? ? [/RPar's_join *]. subst. exfalso.
|
||||
eauto with join.
|
||||
+ hauto lq:on use:InterpExt_Ne_inv.
|
||||
- move => p A B PA PF hPA ihPA hTot hRes ihPF U PU /InterpExtInv.
|
||||
move => [B0 []].
|
||||
case : B0 => //=.
|
||||
+ move => p0 A0 B0 _ [hr hPi].
|
||||
move /hfb_caseP.
|
||||
elim /hfb_inv => _.
|
||||
rename B0 into B00.
|
||||
+ move => p0 A0 B0 ? [hr hPi]. subst.
|
||||
move /InterpExt_Bind_inv : hPi.
|
||||
move => [PA0][PF0][hPA0][hTot0][hRes0]?. subst.
|
||||
move => hjoin.
|
||||
have{}hr : join U (TBind p0 A0 B0) by auto using RPars_join.
|
||||
have{}hr : join U (TBind p0 A0 B0) by auto using RPar's_join.
|
||||
have hj : join (TBind p A B) (TBind p0 A0 B0) by eauto using join_transitive.
|
||||
have {hj} : p0 = p /\ join A A0 /\ join B B0 by hauto l:on use:join_pi_inj.
|
||||
move => [? [h0 h1]]. subst.
|
||||
|
@ -268,36 +361,38 @@ Proof.
|
|||
move => a PB PB0 hPB hPB0.
|
||||
apply : ihPF; eauto.
|
||||
by apply join_substing.
|
||||
+ move => j _.
|
||||
+ move => j ?. subst.
|
||||
move => [h0 h1] h.
|
||||
have ? : join U (Univ j) by eauto using RPars_join.
|
||||
have ? : join U (Univ j) by eauto using RPar's_join.
|
||||
have : join (TBind p A B) (Univ j) by eauto using join_transitive.
|
||||
move => ?. exfalso.
|
||||
eauto using join_univ_pi_contra.
|
||||
+ move => A0 ? ? [/RPar's_join ?]. subst.
|
||||
move => _ ?. exfalso. eauto with join.
|
||||
- move => j ? B PB /InterpExtInv.
|
||||
move => [+ []]. case => //=.
|
||||
move => [? []]. move/hfb_caseP.
|
||||
elim /hfb_inv => //= _.
|
||||
+ move => p A0 B0 _ [].
|
||||
move /RPars_join => *.
|
||||
have ? : join (TBind p A0 B0) (Univ j) by eauto using join_symmetric, join_transitive.
|
||||
exfalso.
|
||||
eauto using join_univ_pi_contra.
|
||||
+ move => m _ [/RPars_join h0 + h1].
|
||||
move /RPar's_join => *.
|
||||
exfalso. eauto with join.
|
||||
+ move => m _ [/RPar's_join h0 + h1].
|
||||
have /join_univ_inj {h0 h1} ? : join (Univ j : Tm n) (Univ m) by eauto using join_transitive.
|
||||
subst.
|
||||
move /InterpExt_Univ_inv. firstorder.
|
||||
+ move => A ? ? [/RPar's_join] *. subst. exfalso. eauto with join.
|
||||
- move => A A0 PA h.
|
||||
have /join_symmetric {}h : join A A0 by hauto lq:on ctrs:rtc use:RPar_Par, relations.rtc_once.
|
||||
have /join_symmetric {}h : join A A0 by hauto lq:on ctrs:rtc use:RPar'_Par, relations.rtc_once.
|
||||
eauto using join_transitive.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUniv_Join i (A B : Tm n) PA PB :
|
||||
Lemma InterpUniv_Join n i (A B : Tm n) PA PB :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
⟦ B ⟧ i ↘ PB ->
|
||||
join A B ->
|
||||
PA = PB.
|
||||
Proof. hauto l:on use:InterpExt_Join rew:db:InterpUniv. Qed.
|
||||
|
||||
Lemma InterpUniv_Bind_inv p i (A : Tm n) B P
|
||||
Lemma InterpUniv_Bind_inv n p i (A : Tm n) B P
|
||||
(h : ⟦ TBind p A B ⟧ i ↘ P) :
|
||||
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
|
||||
⟦ A ⟧ i ↘ PA /\
|
||||
|
@ -306,24 +401,24 @@ Lemma InterpUniv_Bind_inv p i (A : Tm n) B P
|
|||
P = BindSpace p PA PF.
|
||||
Proof. hauto l:on use:InterpExt_Bind_inv rew:db:InterpUniv. Qed.
|
||||
|
||||
Lemma InterpUniv_Univ_inv i j P
|
||||
Lemma InterpUniv_Univ_inv n i j P
|
||||
(h : ⟦ Univ j ⟧ i ↘ P) :
|
||||
P = (fun (A : Tm n) => exists PA, ⟦ A ⟧ j ↘ PA) /\ j < i.
|
||||
Proof. hauto l:on use:InterpExt_Univ_inv rew:db:InterpUniv. Qed.
|
||||
|
||||
Lemma InterpExt_Functional i I (A B : Tm n) PA PB :
|
||||
Lemma InterpExt_Functional n i I (A B : Tm n) PA PB :
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
⟦ A ⟧ i ;; I ↘ PB ->
|
||||
PA = PB.
|
||||
Proof. hauto use:InterpExt_Join, join_refl. Qed.
|
||||
|
||||
Lemma InterpUniv_Functional i (A : Tm n) PA PB :
|
||||
Lemma InterpUniv_Functional n i (A : Tm n) PA PB :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
⟦ A ⟧ i ↘ PB ->
|
||||
PA = PB.
|
||||
Proof. hauto use:InterpExt_Functional rew:db:InterpUniv. Qed.
|
||||
|
||||
Lemma InterpUniv_Join' i j (A B : Tm n) PA PB :
|
||||
Lemma InterpUniv_Join' n i j (A B : Tm n) PA PB :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
⟦ B ⟧ j ↘ PB ->
|
||||
join A B ->
|
||||
|
@ -336,15 +431,15 @@ Proof.
|
|||
eauto using InterpUniv_Join.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUniv_Functional' i j A PA PB :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
Lemma InterpUniv_Functional' n i j A PA PB :
|
||||
⟦ A : Tm n ⟧ i ↘ PA ->
|
||||
⟦ A ⟧ j ↘ PB ->
|
||||
PA = PB.
|
||||
Proof.
|
||||
hauto l:on use:InterpUniv_Join', join_refl.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_Bind_inv_nopf i I p A B P (h : ⟦TBind p A B ⟧ i ;; I ↘ P) :
|
||||
Lemma InterpExt_Bind_inv_nopf i n I p A B P (h : ⟦TBind p A B ⟧ i ;; I ↘ P) :
|
||||
exists (PA : Tm n -> Prop),
|
||||
⟦ A ⟧ i ;; I ↘ PA /\
|
||||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\
|
||||
|
@ -366,34 +461,35 @@ Proof.
|
|||
split; hauto q:on use:InterpExt_Functional.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUniv_Bind_inv_nopf i p A B P (h : ⟦TBind p A B ⟧ i ↘ P) :
|
||||
Lemma InterpUniv_Bind_inv_nopf n i p A B P (h : ⟦TBind p A B ⟧ i ↘ P) :
|
||||
exists (PA : Tm n -> Prop),
|
||||
⟦ A ⟧ i ↘ PA /\
|
||||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) /\
|
||||
P = BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB).
|
||||
Proof. hauto l:on use:InterpExt_Bind_inv_nopf rew:db:InterpUniv. Qed.
|
||||
|
||||
Lemma InterpExt_back_clos i I (A : Tm n) PA :
|
||||
(forall j, forall a b, (RPar.R a b) -> I j b -> I j a) ->
|
||||
Lemma InterpExt_back_clos n i I (A : Tm n) PA :
|
||||
(forall j, forall a b, (RPar'.R a b) -> I j b -> I j a) ->
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
forall a b, (RPar.R a b) ->
|
||||
forall a b, (RPar'.R a b) ->
|
||||
PA b -> PA a.
|
||||
Proof.
|
||||
move => hI h.
|
||||
elim : A PA /h.
|
||||
- hauto q:on ctrs:rtc unfold:wne.
|
||||
- move => p A B PA PF hPA ihPA hTot hRes ihPF a b hr.
|
||||
case : p => //=.
|
||||
+ have : forall b0 b1 a, RPar.R b0 b1 -> RPar.R (App b0 a) (App b1 a)
|
||||
by hauto lq:on ctrs:RPar.R use:RPar.refl.
|
||||
+ have : forall b0 b1 a, RPar'.R b0 b1 -> RPar'.R (App b0 a) (App b1 a)
|
||||
by hauto lq:on ctrs:RPar'.R use:RPar'.refl.
|
||||
hauto lq:on rew:off unfold:ProdSpace.
|
||||
+ hauto lq:on ctrs:rtc unfold:SumSpace.
|
||||
- eauto.
|
||||
- eauto.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUniv_back_clos i (A : Tm n) PA :
|
||||
Lemma InterpUniv_back_clos n i (A : Tm n) PA :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
forall a b, (RPar.R a b) ->
|
||||
forall a b, (RPar'.R a b) ->
|
||||
PA b -> PA a.
|
||||
Proof.
|
||||
simp InterpUniv.
|
||||
|
@ -401,9 +497,9 @@ Proof.
|
|||
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUniv_back_clos_star i (A : Tm n) PA :
|
||||
Lemma InterpUniv_back_clos_star n i (A : Tm n) PA :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
forall a b, rtc RPar.R a b ->
|
||||
forall a b, rtc RPar'.R a b ->
|
||||
PA b -> PA a.
|
||||
Proof.
|
||||
move => h a b.
|
||||
|
@ -411,30 +507,31 @@ Proof.
|
|||
hauto lq:on use:InterpUniv_back_clos.
|
||||
Qed.
|
||||
|
||||
Definition ρ_ok {n} Γ (ρ : fin n -> Tm n) := forall i m PA,
|
||||
⟦ subst_Tm ρ (Γ i) ⟧ m ↘ PA -> PA (ρ i).
|
||||
Definition ρ_ok {n} (Γ : fin n -> Tm n) m (ρ : fin n -> Tm m) := forall i k PA,
|
||||
⟦ subst_Tm ρ (Γ i) ⟧ k ↘ PA -> PA (ρ i).
|
||||
|
||||
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists m PA, ⟦ subst_Tm ρ A ⟧ m ↘ PA /\ PA (subst_Tm ρ a).
|
||||
Definition SemWt {n} Γ (a A : Tm n) := forall m ρ, ρ_ok Γ m ρ -> exists k PA, ⟦ subst_Tm ρ A ⟧ k ↘ PA /\ PA (subst_Tm ρ a).
|
||||
Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70).
|
||||
|
||||
(* Semantic context wellformedness *)
|
||||
Definition SemWff {n} Γ := forall (i : fin n), exists j, Γ ⊨ Γ i ∈ Univ j.
|
||||
Notation "⊨ Γ" := (SemWff Γ) (at level 70).
|
||||
|
||||
Lemma ρ_ok_nil ρ :
|
||||
ρ_ok null ρ.
|
||||
Lemma ρ_ok_id n (Γ : fin n -> Tm n) :
|
||||
ρ_ok Γ n VarTm.
|
||||
Proof. rewrite /ρ_ok. inversion i; subst. Qed.
|
||||
|
||||
Lemma ρ_ok_cons n i (Γ : fin n -> Tm n) ρ a PA A :
|
||||
⟦ subst_Tm ρ A ⟧ i ↘ PA -> PA a ->
|
||||
ρ_ok Γ ρ ->
|
||||
ρ_ok (funcomp (ren_Tm shift) (scons A Γ)) ((scons a ρ)).
|
||||
ρ_ok (funcomp (ren_Tm shift) (scons A Γ)) (scons a ρ).
|
||||
Proof.
|
||||
move => h0 h1 h2.
|
||||
rewrite /ρ_ok.
|
||||
move => j.
|
||||
destruct j as [j|].
|
||||
- move => m PA0. asimpl => ?.
|
||||
asimpl.
|
||||
firstorder.
|
||||
- move => m PA0. asimpl => h3.
|
||||
have ? : PA0 = PA by eauto using InterpUniv_Functional'.
|
||||
|
@ -573,7 +670,7 @@ Proof.
|
|||
intros (m & PB0 & hPB0 & hPB0').
|
||||
replace PB0 with PB in * by hauto l:on use:InterpUniv_Functional'.
|
||||
apply : InterpUniv_back_clos; eauto.
|
||||
apply : RPar.AppAbs'; eauto using RPar.refl.
|
||||
apply : RPar'.AppAbs'; eauto using RPar'.refl.
|
||||
by asimpl.
|
||||
Qed.
|
||||
|
||||
|
@ -629,22 +726,22 @@ Proof.
|
|||
rewrite /SumSpace.
|
||||
move => [a0 [b0 [h4 [h5 h6]]]].
|
||||
exists m, S. split => //=.
|
||||
have {}h4 : rtc RPar.R (Proj PL (subst_Tm ρ a)) (Proj PL (Pair a0 b0)) by eauto using RPars.ProjCong.
|
||||
have ? : RPar.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar.refl, RPar.ProjPair'.
|
||||
have : rtc RPar.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
|
||||
have {}h4 : rtc RPar'.R (Proj PL (subst_Tm ρ a)) (Proj PL (Pair a0 b0)) by eauto using RPar's.ProjCong.
|
||||
have ? : RPar'.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar'.refl, RPar'.ProjPair'.
|
||||
have : rtc RPar'.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
|
||||
move => h.
|
||||
apply : InterpUniv_back_clos_star; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma substing_RPar n m (A : Tm (S n)) ρ (B : Tm m) C :
|
||||
RPar.R B C ->
|
||||
RPar.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
|
||||
Proof. hauto lq:on inv:option use:RPar.morphing, RPar.refl. Qed.
|
||||
Lemma substing_RPar' n m (A : Tm (S n)) ρ (B : Tm m) C :
|
||||
RPar'.R B C ->
|
||||
RPar'.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
|
||||
Proof. hauto lq:on inv:option use:RPar'.morphing, RPar'.refl. Qed.
|
||||
|
||||
Lemma substing_RPars n m (A : Tm (S n)) ρ (B : Tm m) C :
|
||||
rtc RPar.R B C ->
|
||||
rtc RPar.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
|
||||
Proof. induction 1; hauto lq:on ctrs:rtc use:substing_RPar. Qed.
|
||||
Lemma substing_RPar's n m (A : Tm (S n)) ρ (B : Tm m) C :
|
||||
rtc RPar'.R B C ->
|
||||
rtc RPar'.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
|
||||
Proof. induction 1; hauto lq:on ctrs:rtc use:substing_RPar'. Qed.
|
||||
|
||||
Lemma ST_Proj2 n Γ (a : Tm n) A B :
|
||||
Γ ⊨ a ∈ TBind TSig A B ->
|
||||
|
@ -658,13 +755,13 @@ Proof.
|
|||
move => [a0 [b0 [h4 [h5 h6]]]].
|
||||
specialize h3 with (1 := h5).
|
||||
move : h3 => [PB hPB].
|
||||
have hr : forall p, rtc RPar.R (Proj p (subst_Tm ρ a)) (Proj p (Pair a0 b0)) by eauto using RPars.ProjCong.
|
||||
have hrl : RPar.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar.ProjPair', RPar.refl.
|
||||
have hrr : RPar.R (Proj PR (Pair a0 b0)) b0 by hauto l:on use:RPar.ProjPair', RPar.refl.
|
||||
have hr : forall p, rtc RPar'.R (Proj p (subst_Tm ρ a)) (Proj p (Pair a0 b0)) by eauto using RPar's.ProjCong.
|
||||
have hrl : RPar'.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar'.ProjPair', RPar'.refl.
|
||||
have hrr : RPar'.R (Proj PR (Pair a0 b0)) b0 by hauto l:on use:RPar'.ProjPair', RPar'.refl.
|
||||
exists m, PB.
|
||||
asimpl. split.
|
||||
- have h : rtc RPar.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
|
||||
have {}h : rtc RPar.R (subst_Tm (scons (Proj PL (subst_Tm ρ a)) ρ) B) (subst_Tm (scons a0 ρ) B) by eauto using substing_RPars.
|
||||
- have h : rtc RPar'.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
|
||||
have {}h : rtc RPar'.R (subst_Tm (scons (Proj PL (subst_Tm ρ a)) ρ) B) (subst_Tm (scons a0 ρ) B) by eauto using substing_RPar's.
|
||||
move : hPB. asimpl.
|
||||
eauto using InterpUnivN_back_preservation_star.
|
||||
- hauto lq:on use:@relations.rtc_r, InterpUniv_back_clos_star.
|
||||
|
|
Loading…
Add table
Reference in a new issue