Modify the definition of tstar to evaluate more aggressively

This commit is contained in:
Yiyun Liu 2025-01-12 16:42:09 -05:00
parent c9fcafb47f
commit bc848e91ea

View file

@ -33,8 +33,6 @@ Module Par.
R b0 b1 ->
R c0 c1 ->
R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1))
| AppBool b a :
R (App (BVal b) a) (BVal b)
| ProjAbs p a0 a1 :
R a0 a1 ->
R (Proj p (Abs a0)) (Abs (Proj p a1))
@ -42,8 +40,6 @@ Module Par.
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1)
| ProjBool p b :
R (Proj p (BVal b)) (BVal b)
| IfAbs (a0 a1 : Tm (S n)) b0 b1 c0 c1 :
R a0 a1 ->
R b0 b1 ->
@ -175,10 +171,8 @@ Module Par.
by asimpl.
hauto l:on use:renaming inv:option.
- hauto lq:on rew:off ctrs:R.
- hauto lq:on rew:off ctrs:R.
- hauto l:on inv:option use:renaming ctrs:R.
- hauto lq:on use:ProjPair'.
- hauto lq:on rew:off ctrs:R.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ρ0 ρ1 hρ /=.
eapply IfAbs' with (a1 := (subst_Tm (up_Tm_Tm ρ1) a1)); eauto. by asimpl.
hauto l:on use:renaming inv:option.
@ -230,8 +224,6 @@ Module Par.
eexists. split.
apply AppPair; hauto. subst.
by asimpl.
- move => n b a m ξ []//=.
hauto q:on ctrs:R inv:Tm.
- move => n p a0 a1 ha iha m ξ []//= p0 []//= t [*]. subst.
spec_refl. move : iha => [b0 [? ?]]. subst.
eexists. split. apply ProjAbs; eauto. by asimpl.
@ -241,9 +233,6 @@ Module Par.
move : ihb => [c0 [? ?]]. subst.
eexists. split. by eauto using ProjPair.
hauto q:on.
- move => n p b m ξ []//=.
move => + []//=.
hauto lq:on ctrs:R.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ξ []//= t t0 t1 [h *]. subst.
case : t h => // t [*]. subst.
spec_refl.
@ -395,8 +384,6 @@ Module RPar.
R b0 b1 ->
R c0 c1 ->
R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1))
| AppBool b a :
R (App (BVal b) a) (BVal b)
| ProjAbs p a0 a1 :
R a0 a1 ->
R (Proj p (Abs a0)) (Abs (Proj p a1))
@ -404,8 +391,6 @@ Module RPar.
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1)
| ProjBool p b :
R (Proj p (BVal b)) (BVal b)
| IfAbs (a0 a1 : Tm (S n)) b0 b1 c0 c1 :
R a0 a1 ->
R b0 b1 ->
@ -455,7 +440,18 @@ Module RPar.
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (If a0 b0 c0) (If a1 b1 c1).
R (If a0 b0 c0) (If a1 b1 c1)
| IfApp a0 a1 b0 b1 c0 c1 d0 d1 :
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R d0 d1 ->
R (If (App a0 b0) c0 d0) (App (If a1 c1 d1) b1)
| IfProj p a0 a1 b0 b1 c0 c1 :
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (If (Proj p a0) b0 c0) (Proj p (If a1 b1 c1)).
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
@ -528,10 +524,8 @@ Module RPar.
apply : AppAbs'; eauto using morphing_up.
by asimpl.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R use:ProjPair' use:morphing_up.
- sfirstorder.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ρ0 ρ1 hρ /=.
apply : IfAbs'; eauto using morphing_up.
by asimpl.
@ -548,6 +542,8 @@ Module RPar.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
Qed.
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
@ -621,9 +617,6 @@ Module RPar.
eexists. split.
apply AppPair; hauto. subst.
by asimpl.
- move => n b a m ρ hρ []//=; first by antiimp.
case => //=; first by antiimp.
hauto lq:on ctrs:R.
- move => n p a0 a1 ha iha m ρ hρ []//=;
first by antiimp.
move => p0 []//= t [*]; first by antiimp. subst.
@ -641,9 +634,6 @@ Module RPar.
move : ihb => [c0 [? ?]]. subst.
eexists. split. by eauto using ProjPair.
hauto q:on.
- move => n p b m ρ hρ []//=; first by antiimp.
move => p0 + []//=. case => //=; first by antiimp.
hauto lq:on ctrs:R.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ρ hρ []//=; first by antiimp.
move => + b2 c2 [+ *]. subst. case => //=; first by antiimp.
move => a [*]. subst.
@ -734,7 +724,57 @@ Module RPar.
have {}/ihc := (hρ) => ihc.
spec_refl.
hauto lq:on ctrs:R.
Admitted.
Function tstar {n} (a : Tm n) :=
match a with
| VarTm i => a
| Abs a => Abs (tstar a)
| App a b => match tstar a with
| Abs a => subst_Tm (scons (tstar b) VarTm) a
| Pair a c => Pair (App a (tstar b)) (App c (tstar b))
| _ => App (tstar a) (tstar b)
end
| Pair a b => Pair (tstar a) (tstar b)
| Proj p a => match tstar a with
| Pair a b => if p is PL then a else b
| Abs a => Abs (Proj p a)
| _ => Proj p (tstar a)
end
| TBind p a b => TBind p (tstar a) (tstar b)
| Bot => Bot
| Univ i => Univ i
| Bool => Bool
| BVal b => BVal b
| If a b c => match tstar a with
| BVal v => if v then (tstar b) else (tstar c)
| Abs a => Abs (If a (ren_Tm shift (tstar b)) (ren_Tm shift (tstar c)))
| Pair a0 a1 => Pair (If a0 (tstar b) (tstar c)) (If a1 (tstar b) (tstar c))
| Proj p a => Proj p (If a (tstar b) (tstar c))
| App a0 a1 => App (If a0 (tstar b) (tstar c)) a1
| _ => If (tstar a) (tstar b) (tstar c)
end
end.
Lemma RPar_triangle n (a : Tm n) : forall b, RPar.R a b -> RPar.R b (tstar a).
Proof.
apply tstar_ind => {n a}.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on use:RPar.cong, RPar.refl ctrs:RPar.R inv:RPar.R.
- hauto lq:on rew:off ctrs:RPar.R inv:RPar.R.
- hauto lq:on rew:off inv:RPar.R ctrs:RPar.R.
- hauto lq:on rew:off inv:RPar.R ctrs:RPar.R.
- hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'.
- hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
Qed.
End RPar.
(* (***************** Beta rules only ***********************) *)
@ -1798,41 +1838,6 @@ Proof.
- admit.
Admitted.
Function tstar {n} (a : Tm n) :=
match a with
| VarTm i => a
| Abs a => Abs (tstar a)
| App (Abs a) b => subst_Tm (scons (tstar b) VarTm) (tstar a)
| App (Pair a b) c =>
Pair (App (tstar a) (tstar c)) (App (tstar b) (tstar c))
| App a b => App (tstar a) (tstar b)
| Pair a b => Pair (tstar a) (tstar b)
| Proj p (Pair a b) => if p is PL then (tstar a) else (tstar b)
| Proj p (Abs a) => (Abs (Proj p (tstar a)))
| Proj p a => Proj p (tstar a)
| TBind p a b => TBind p (tstar a) (tstar b)
| Bot => Bot
| Univ i => Univ i
end.
Lemma RPar_triangle n (a : Tm n) : forall b, RPar.R a b -> RPar.R b (tstar a).
Proof.
apply tstar_ind => {n a}.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on use:RPar.cong, RPar.refl ctrs:RPar.R inv:RPar.R.
- hauto lq:on rew:off ctrs:RPar.R inv:RPar.R.
- hauto lq:on rew:off inv:RPar.R ctrs:RPar.R.
- hauto lq:on rew:off inv:RPar.R ctrs:RPar.R.
- hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'.
- hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
Qed.
Function tstar' {n} (a : Tm n) :=
match a with
| VarTm i => a