diff --git a/syntax.sig b/syntax.sig index 4549f7f..d2354e2 100644 --- a/syntax.sig +++ b/syntax.sig @@ -2,6 +2,7 @@ nat : Type Tm(VarTm) : Type PTag : Type TTag : Type +bool : Type TPi : TTag TSig : TTag @@ -14,3 +15,6 @@ Proj : PTag -> Tm -> Tm TBind : TTag -> Tm -> (bind Tm in Tm) -> Tm Bot : Tm Univ : nat -> Tm +Bool : Tm +BVal : bool -> Tm +If : Tm -> Tm -> Tm -> Tm \ No newline at end of file diff --git a/theories/Autosubst2/syntax.v b/theories/Autosubst2/syntax.v index b972476..ffb7c7c 100644 --- a/theories/Autosubst2/syntax.v +++ b/theories/Autosubst2/syntax.v @@ -41,7 +41,10 @@ Inductive Tm (n_Tm : nat) : Type := | Proj : PTag -> Tm n_Tm -> Tm n_Tm | TBind : TTag -> Tm n_Tm -> Tm (S n_Tm) -> Tm n_Tm | Bot : Tm n_Tm - | Univ : nat -> Tm n_Tm. + | Univ : nat -> Tm n_Tm + | Bool : Tm n_Tm + | BVal : bool -> Tm n_Tm + | If : Tm n_Tm -> Tm n_Tm -> Tm n_Tm -> Tm n_Tm. Lemma congr_Abs {m_Tm : nat} {s0 : Tm (S m_Tm)} {t0 : Tm (S m_Tm)} (H0 : s0 = t0) : Abs m_Tm s0 = Abs m_Tm t0. @@ -94,6 +97,27 @@ Proof. exact (eq_trans eq_refl (ap (fun x => Univ m_Tm x) H0)). Qed. +Lemma congr_Bool {m_Tm : nat} : Bool m_Tm = Bool m_Tm. +Proof. +exact (eq_refl). +Qed. + +Lemma congr_BVal {m_Tm : nat} {s0 : bool} {t0 : bool} (H0 : s0 = t0) : + BVal m_Tm s0 = BVal m_Tm t0. +Proof. +exact (eq_trans eq_refl (ap (fun x => BVal m_Tm x) H0)). +Qed. + +Lemma congr_If {m_Tm : nat} {s0 : Tm m_Tm} {s1 : Tm m_Tm} {s2 : Tm m_Tm} + {t0 : Tm m_Tm} {t1 : Tm m_Tm} {t2 : Tm m_Tm} (H0 : s0 = t0) (H1 : s1 = t1) + (H2 : s2 = t2) : If m_Tm s0 s1 s2 = If m_Tm t0 t1 t2. +Proof. +exact (eq_trans + (eq_trans (eq_trans eq_refl (ap (fun x => If m_Tm x s1 s2) H0)) + (ap (fun x => If m_Tm t0 x s2) H1)) + (ap (fun x => If m_Tm t0 t1 x) H2)). +Qed. + Lemma upRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) : fin (S m) -> fin (S n). Proof. @@ -118,6 +142,10 @@ Fixpoint ren_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm) TBind n_Tm s0 (ren_Tm xi_Tm s1) (ren_Tm (upRen_Tm_Tm xi_Tm) s2) | Bot _ => Bot n_Tm | Univ _ s0 => Univ n_Tm s0 + | Bool _ => Bool n_Tm + | BVal _ s0 => BVal n_Tm s0 + | If _ s0 s1 s2 => + If n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1) (ren_Tm xi_Tm s2) end. Lemma up_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) : @@ -145,6 +173,11 @@ Fixpoint subst_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm) TBind n_Tm s0 (subst_Tm sigma_Tm s1) (subst_Tm (up_Tm_Tm sigma_Tm) s2) | Bot _ => Bot n_Tm | Univ _ s0 => Univ n_Tm s0 + | Bool _ => Bool n_Tm + | BVal _ s0 => BVal n_Tm s0 + | If _ s0 s1 s2 => + If n_Tm (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1) + (subst_Tm sigma_Tm s2) end. Lemma upId_Tm_Tm {m_Tm : nat} (sigma : fin m_Tm -> Tm m_Tm) @@ -185,6 +218,11 @@ subst_Tm sigma_Tm s = s := (idSubst_Tm (up_Tm_Tm sigma_Tm) (upId_Tm_Tm _ Eq_Tm) s2) | Bot _ => congr_Bot | Univ _ s0 => congr_Univ (eq_refl s0) + | Bool _ => congr_Bool + | BVal _ s0 => congr_BVal (eq_refl s0) + | If _ s0 s1 s2 => + congr_If (idSubst_Tm sigma_Tm Eq_Tm s0) (idSubst_Tm sigma_Tm Eq_Tm s1) + (idSubst_Tm sigma_Tm Eq_Tm s2) end. Lemma upExtRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) @@ -229,6 +267,11 @@ Fixpoint extRen_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm) (upExtRen_Tm_Tm _ _ Eq_Tm) s2) | Bot _ => congr_Bot | Univ _ s0 => congr_Univ (eq_refl s0) + | Bool _ => congr_Bool + | BVal _ s0 => congr_BVal (eq_refl s0) + | If _ s0 s1 s2 => + congr_If (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0) + (extRen_Tm xi_Tm zeta_Tm Eq_Tm s1) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s2) end. Lemma upExt_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) @@ -274,6 +317,11 @@ Fixpoint ext_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm) s2) | Bot _ => congr_Bot | Univ _ s0 => congr_Univ (eq_refl s0) + | Bool _ => congr_Bool + | BVal _ s0 => congr_BVal (eq_refl s0) + | If _ s0 s1 s2 => + congr_If (ext_Tm sigma_Tm tau_Tm Eq_Tm s0) + (ext_Tm sigma_Tm tau_Tm Eq_Tm s1) (ext_Tm sigma_Tm tau_Tm Eq_Tm s2) end. Lemma up_ren_ren_Tm_Tm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l) @@ -319,6 +367,12 @@ Fixpoint compRenRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat} (upRen_Tm_Tm rho_Tm) (up_ren_ren _ _ _ Eq_Tm) s2) | Bot _ => congr_Bot | Univ _ s0 => congr_Univ (eq_refl s0) + | Bool _ => congr_Bool + | BVal _ s0 => congr_BVal (eq_refl s0) + | If _ s0 s1 s2 => + congr_If (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0) + (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1) + (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s2) end. Lemma up_ren_subst_Tm_Tm {k : nat} {l : nat} {m_Tm : nat} @@ -375,6 +429,12 @@ Fixpoint compRenSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat} (up_Tm_Tm theta_Tm) (up_ren_subst_Tm_Tm _ _ _ Eq_Tm) s2) | Bot _ => congr_Bot | Univ _ s0 => congr_Univ (eq_refl s0) + | Bool _ => congr_Bool + | BVal _ s0 => congr_BVal (eq_refl s0) + | If _ s0 s1 s2 => + congr_If (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0) + (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1) + (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s2) end. Lemma up_subst_ren_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat} @@ -452,6 +512,12 @@ ren_Tm zeta_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s := (up_Tm_Tm theta_Tm) (up_subst_ren_Tm_Tm _ _ _ Eq_Tm) s2) | Bot _ => congr_Bot | Univ _ s0 => congr_Univ (eq_refl s0) + | Bool _ => congr_Bool + | BVal _ s0 => congr_BVal (eq_refl s0) + | If _ s0 s1 s2 => + congr_If (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0) + (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1) + (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s2) end. Lemma up_subst_subst_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat} @@ -530,6 +596,12 @@ subst_Tm tau_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s := (up_Tm_Tm theta_Tm) (up_subst_subst_Tm_Tm _ _ _ Eq_Tm) s2) | Bot _ => congr_Bot | Univ _ s0 => congr_Univ (eq_refl s0) + | Bool _ => congr_Bool + | BVal _ s0 => congr_BVal (eq_refl s0) + | If _ s0 s1 s2 => + congr_If (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0) + (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1) + (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s2) end. Lemma renRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat} @@ -646,6 +718,12 @@ Fixpoint rinst_inst_Tm {m_Tm : nat} {n_Tm : nat} (rinstInst_up_Tm_Tm _ _ Eq_Tm) s2) | Bot _ => congr_Bot | Univ _ s0 => congr_Univ (eq_refl s0) + | Bool _ => congr_Bool + | BVal _ s0 => congr_BVal (eq_refl s0) + | If _ s0 s1 s2 => + congr_If (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0) + (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1) + (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s2) end. Lemma rinstInst'_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm) @@ -844,6 +922,12 @@ Core. Arguments VarTm {n_Tm}. +Arguments If {n_Tm}. + +Arguments BVal {n_Tm}. + +Arguments Bool {n_Tm}. + Arguments Univ {n_Tm}. Arguments Bot {n_Tm}. diff --git a/theories/fp_red.v b/theories/fp_red.v index d2fbdf6..9424da6 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -33,6 +33,8 @@ Module Par. R b0 b1 -> R c0 c1 -> R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1)) + | AppBool b a : + R (App (BVal b) a) (BVal b) | ProjAbs p a0 a1 : R a0 a1 -> R (Proj p (Abs a0)) (Abs (Proj p a1)) @@ -40,7 +42,24 @@ Module Par. R a0 a1 -> R b0 b1 -> R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1) - + | ProjBool p b : + R (Proj p (BVal b)) (BVal b) + | IfAbs a0 a1 b0 b1 c0 c1 d0 d1 : + R a0 a1 -> + R b0 b1 -> + R c0 c1 -> + R d0 d1 -> + R (If (Abs a0) b0 c0) (Abs (If a0 (ren_Tm shift b0) (ren_Tm shift c0))) + | IfPair a0 a1 b0 b1 c0 c1 d0 d1 : + R a0 a1 -> + R b0 b1 -> + R c0 c1 -> + R d0 d1 -> + R (If (Pair a0 b0) c0 d0) (Pair (If a0 c0 d0) (If b0 c0 d0)) + | IfBool a b0 b1 c0 c1 : + R b0 b1 -> + R c0 c1 -> + R (If (BVal a) b0 c0) (if a then b1 else c1) (****************** Eta ***********************) | AppEta a0 a1 : R a0 a1 ->