Recover confluence for rpar and cred

This commit is contained in:
Yiyun Liu 2025-01-12 18:51:08 -05:00
parent dd8b316a87
commit b48734ab12

View file

@ -509,18 +509,7 @@ Module RPar.
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (If a0 b0 c0) (If a1 b1 c1)
| IfApp a0 a1 b0 b1 c0 c1 d0 d1 :
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R d0 d1 ->
R (If (App a0 b0) c0 d0) (App (If a1 c1 d1) b1)
| IfProj p a0 a1 b0 b1 c0 c1 :
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (If (Proj p a0) b0 c0) (Proj p (If a1 b1 c1)).
R (If a0 b0 c0) (If a1 b1 c1).
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
@ -611,8 +600,6 @@ Module RPar.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
Qed.
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
@ -793,36 +780,29 @@ Module RPar.
have {}/ihc := (hρ) => ihc.
spec_refl.
hauto lq:on ctrs:R.
Admitted.
Qed.
Function tstar {n} (a : Tm n) :=
match a with
| VarTm i => a
| Abs a => Abs (tstar a)
| App a b => match tstar a with
| Abs a => subst_Tm (scons (tstar b) VarTm) a
| Pair a c => Pair (App a (tstar b)) (App c (tstar b))
| _ => App (tstar a) (tstar b)
end
| App (Abs a) b => subst_Tm (scons (tstar b) VarTm) (tstar a)
| App (Pair a b) c =>
Pair (App (tstar a) (tstar c)) (App (tstar b) (tstar c))
| App a b => App (tstar a) (tstar b)
| Pair a b => Pair (tstar a) (tstar b)
| Proj p a => match tstar a with
| Pair a b => if p is PL then a else b
| Abs a => Abs (Proj p a)
| _ => Proj p (tstar a)
end
| Proj p (Pair a b) => if p is PL then (tstar a) else (tstar b)
| Proj p (Abs a) => (Abs (Proj p (tstar a)))
| Proj p a => Proj p (tstar a)
| TBind p a b => TBind p (tstar a) (tstar b)
| Bot => Bot
| Univ i => Univ i
| Bool => Bool
| BVal b => BVal b
| If a b c => match tstar a with
| BVal v => if v then (tstar b) else (tstar c)
| Abs a => Abs (If a (ren_Tm shift (tstar b)) (ren_Tm shift (tstar c)))
| Pair a0 a1 => Pair (If a0 (tstar b) (tstar c)) (If a1 (tstar b) (tstar c))
| Proj p a => Proj p (If a (tstar b) (tstar c))
| App a0 a1 => App (If a0 (tstar b) (tstar c)) a1
| _ => If (tstar a) (tstar b) (tstar c)
end
| If (BVal v) b c => if v then (tstar b) else (tstar c)
| If (Abs a) b c => Abs (If (tstar a) (ren_Tm shift (tstar b)) (ren_Tm shift (tstar c)))
| If (Pair a0 a1) b c => Pair (If (tstar a0) (tstar b) (tstar c)) (If (tstar a1) (tstar b) (tstar c))
| If a b c => If (tstar a) (tstar b) (tstar c)
| BVal v => BVal v
end.
Lemma RPar_triangle n (a : Tm n) : forall b, RPar.R a b -> RPar.R b (tstar a).
@ -841,9 +821,15 @@ Module RPar.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on ctrs:R inv:R.
- qauto l:on use:refl, IfBool' inv:R.
- hauto drew:off use:refl, IfBool' inv:R.
- hauto lq:on ctrs:RPar.R inv:RPar.R use:renaming.
- hauto lq:on drew:off ctrs:R inv:R.
- hauto lq:on drew:off ctrs:R inv:R.
- hauto lq:on drew:off ctrs:R inv:R.
Qed.
End RPar.
(* (***************** Beta rules only ***********************) *)