Add dependent inversion principle

This commit is contained in:
Yiyun Liu 2024-12-16 19:56:27 -05:00
parent d723ee4675
commit b0dbcba2d0

View file

@ -6,7 +6,6 @@ Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
Module Par.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(***************** Beta ***********************)
| Var i : R (VarTm i) (VarTm i)
| AppAbs a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
@ -38,6 +37,7 @@ Module Par.
R a0 (Pair a1 a1)
(*************** Congruence ********************)
| Var i : R (VarTm i) (VarTm i)
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
@ -61,7 +61,6 @@ End Par.
Module RPar.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(***************** Beta ***********************)
| Var i : R (VarTm i) (VarTm i)
| AppAbs a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
@ -85,6 +84,7 @@ Module RPar.
R (Proj2 (Pair a0 b)) a1
(*************** Congruence ********************)
| Var i : R (VarTm i) (VarTm i)
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
@ -102,6 +102,30 @@ Module RPar.
| Proj2Cong a0 a1 :
R a0 a1 ->
R (Proj2 a0) (Proj2 a1).
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
Lemma refl n (a : Tm n) : R a a.
Proof.
induction a; hauto lq:on ctrs:R.
Qed.
Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) :
t = subst_Tm (scons b1 VarTm) a1 ->
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) t.
Proof. move => ->. apply AppAbs. Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h.
move => *; apply : AppAbs'; eauto; by asimpl.
all : qauto ctrs:R.
Qed.
End RPar.
Module EPar.
@ -115,6 +139,7 @@ Module EPar.
R a0 (Pair a1 a1)
(*************** Congruence ********************)
| Var i : R (VarTm i) (VarTm i)
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
@ -132,8 +157,50 @@ Module EPar.
| Proj2Cong a0 a1 :
R a0 a1 ->
R (Proj2 a0) (Proj2 a1).
Lemma refl n (a : Tm n) : EPar.R a a.
Proof.
induction a; hauto lq:on ctrs:EPar.R.
Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h.
move => n a0 a1 ha iha m ξ /=.
move /(_ _ ξ) /AppEta : iha.
by asimpl.
all : qauto ctrs:R.
Qed.
End EPar.
Local Ltac com_helper :=
split; [hauto lq:on ctrs:RPar.R use: RPar.refl, RPar.renaming
|hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming].
Lemma commutativity n (a b0 b1 : Tm n) : EPar.R a b0 -> RPar.R a b1 -> exists c, RPar.R b0 c /\ EPar.R b1 c.
Proof.
move => h. move : b1.
elim : n a b0 / h.
- move => n a b0 ha iha b1 hb.
move : iha (hb) => /[apply].
move => [c [ih0 ih1]].
exists (Abs (App (ren_Tm shift c) (VarTm var_zero))); com_helper.
- move => n a b0 hb0 ihb0 b1 /[dup] hb1 {}/ihb0.
move => [c [ih0 ih1]].
exists (Pair c c); com_helper.
- hauto lq:on ctrs:RPar.R, EPar.R inv:RPar.R.
- hauto lq:on ctrs:RPar.R, EPar.R inv:RPar.R.
- move => n a0 a1 b0 b1 ha iha hb ihb b2.
elim /RPar.inv => //=.
Admitted.
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
Proof. induction 1; hauto lq:on ctrs:Par.R. Qed.