From a6fd48c009691de5816b88638751d84680771ed7 Mon Sep 17 00:00:00 2001 From: Yiyun Liu Date: Sat, 4 Jan 2025 23:38:44 -0500 Subject: [PATCH] Finish prov_extract --- theories/fp_red.v | 147 ++++++++++++---------------------------------- 1 file changed, 37 insertions(+), 110 deletions(-) diff --git a/theories/fp_red.v b/theories/fp_red.v index 7336fbc..035360d 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -1256,19 +1256,6 @@ Proof. - hauto lq:on inv:ERed.R, prov ctrs:prov. Qed. -(* Can consider combine prov and provU *) -Fixpoint prov {n} (h : Tm n) (a : Tm n) : Prop := - match a with - | (TBind p0 A0 B0) => prov_bind p0 A0 B0 h - | (Abs a) => prov (ren_Tm shift h) a - | (App a b) => prov h a - | (Pair a b) => prov h a /\ prov h b - | (Proj p a) => prov h a - | Bot => False - | VarTm _ => False - | Univ i => prov_univ i h - end. - Fixpoint extract {n} (a : Tm n) : Tm n := match a with | TBind p A B => TBind p A B @@ -1297,120 +1284,60 @@ Proof. - sfirstorder. Qed. -Lemma prov_bind_ren n m p (A : Tm n) B (ξ : fin n -> fin m) a : - prov_bind p A B a -> - prov_bind p (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a). +Lemma ren_morphing n m (a : Tm n) (ρ : fin n -> Tm m) : + (forall i, ρ i = extract (ρ i)) -> + extract (subst_Tm ρ a) = subst_Tm ρ (extract a). Proof. - case : a => //=. - hauto l:on use:Pars.renaming. -Qed. - -Lemma prov_ren n m (ξ : fin n -> fin m) h a : - prov h a -> prov (ren_Tm ξ h) (ren_Tm ξ a). -Proof. - move : m ξ h. elim : n / a => //=. - - move => n a ih m ξ h. - move /ih => {ih}. - move /(_ _ (upRen_Tm_Tm ξ)) => /=. - move => h0. - suff : ren_Tm (upRen_Tm_Tm ξ) (ren_Tm shift h) = ren_Tm shift (ren_Tm ξ h) by move => <-. - clear. - case : h => * /=; by asimpl. - - hauto l:on. - - hauto l:on use:prov_bind_ren. - - hauto lq:on inv:Tm. -Qed. - -Definition hfb {n} (a : Tm n) := - match a with - | TBind _ _ _ => true - | Univ _ => true - | _ => false - end. - -Lemma prov_morph n m (ρ : fin n -> Tm m) h a : - prov h a -> - hfb h -> - prov (subst_Tm ρ h) (subst_Tm ρ a). -Proof. - move : m ρ h. elim : n / a => //=. - - move => n a ih m ρ h + hb. - move /ih => {ih}. - move /(_ _ (up_Tm_Tm ρ) ltac:(hauto lq:on inv:Tm)). + move : m ρ. + elim : n /a => n //=. + move => a ha m ρ hi. + rewrite ha. + - destruct i as [i|] => //. + rewrite ren_extract. + rewrite -hi. by asimpl. - - hauto q:on. - - move => n p A ihA B ihB m ρ h /=. move => //= + h0. - case : h h0 => //=. - move => p0 A0 B0 _ [? [h1 h2]]. subst. - hauto l:on use:Pars.substing. - - hauto l:on inv:Tm. + - by asimpl. Qed. -Lemma ren_hfb {n m} (ξ : fin n -> fin m) u : hfb (ren_Tm ξ u) = hfb u. -Proof. move : m ξ. elim : n /u =>//=. Qed. - -Hint Rewrite @ren_hfb : prov. - -Lemma prov_par n (u : Tm n) a b : prov u a -> hfb u -> Par.R a b -> prov u b. +Lemma ren_subst_bot n (a : Tm (S n)) : + extract (subst_Tm (scons Bot VarTm) a) = subst_Tm (scons Bot VarTm) (extract a). Proof. - move => + + h. move : u. - elim : n a b /h => //=. - - move => n a0 a1 b0 b1 ha iha hb ihb u /= h h0. - have h1 : hfb (ren_Tm shift u) by eauto using ren_hfb. - move /iha /(_ h1) : h. - move /(prov_morph _ _ (scons b1 VarTm)) /(_ h1). - by asimpl. - - hauto lq:on rew:db:prov. - - hauto lq:on rew:db:prov. - - hauto lq:on rew:db:prov. - - move => n a0 a1 ha iha A B. move /iha. - hauto l:on use:prov_ren. - - hauto l:on rew:db:prov. - - hauto lq:on rew:db:prov. - - hauto l:on rew:db:prov. - - move => n p A0 A1 B0 B1 hA ihA hB ihB u. - case : u => //=. - move => p0 A B [? [h2 h3]]. subst. - move => ?. repeat split => //=; - hauto l:on use:rtc_r rew:db:prov. -Qed. - -Lemma prov_pars n (u : Tm n) a b : hfb u -> prov u a -> rtc Par.R a b -> prov u b. -Proof. - induction 3; hauto lq:on ctrs:rtc use:prov_par. + apply ren_morphing. destruct i as [i|] => //=. Qed. Definition prov_extract_spec {n} u (a : Tm n) := match u with | TBind p A B => exists A0 B0, extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0 | Univ i => extract a = Univ i + | VarTm i => extract a = VarTm i | _ => True end. Lemma prov_extract n u (a : Tm n) : prov u a -> prov_extract_spec u a. Proof. - move : u. elim : n / a => //=. - - move => n a ih [] //=. - + move => p A B /=. - move /ih {ih}. - simpl. - move => [A0[B0[h [h0 h1]]]]. - have : exists A1, rtc Par.R A A1 /\ ren_Tm shift A1 = A0 - by hauto l:on use:Pars.antirenaming. - move => [A1 [h3 h4]]. - have : exists B1, rtc Par.R B B1 /\ ren_Tm (upRen_Tm_Tm shift) B1 = B0 - by hauto l:on use:Pars.antirenaming. - move => [B1 [h5 h6]]. - subst. - have {}h0 : subst_Tm (scons Bot VarTm) (extract a) = - subst_Tm (scons Bot VarTm) (ren_Tm shift (TBind p A1 B1)) by sauto lq:on. - move : h0. asimpl. - hauto lq:on. - + hauto q:on. - - hauto lq:on rew:off inv:Tm rew:db:prov. - - hauto inv:Tm l:on rew:db:prov. - - hauto l:on inv:Tm rew:db:prov. + move => h. + elim : u a /h. + - sfirstorder. + - move => h a ha ih. + case : h ha ih => //=. + + move => i ha ih. + move /(_ Bot) in ih. + rewrite -ih. + by rewrite ren_subst_bot. + + move => p A B h ih. + move /(_ Bot) : ih => [A0][B0][h0][h1]h2. + rewrite ren_subst_bot in h0. + rewrite h0. + eauto. + + move => i h /(_ Bot). + by rewrite ren_subst_bot => ->. + - hauto lq:on. + - hauto lq:on. + - hauto lq:on. + - sfirstorder. + - sfirstorder. + - sfirstorder. Qed. Definition union {A : Type} (R0 R1 : A -> A -> Prop) a b :=