diff --git a/theories/logrel.v b/theories/logrel.v index 1b79ead..0cec773 100644 --- a/theories/logrel.v +++ b/theories/logrel.v @@ -591,3 +591,67 @@ Proof. move : hTot hb. move/[apply]. asimpl. hauto lq:on. Qed. + +Lemma ST_Pair n Γ (a b : Tm n) A B i : + Γ ⊨ TBind TSig A B ∈ (Univ i) -> + Γ ⊨ a ∈ A -> + Γ ⊨ b ∈ subst_Tm (scons a VarTm) B -> + Γ ⊨ Pair a b ∈ TBind TSig A B. +Proof. + move /SemWt_Univ => + ha hb ρ hρ. + move /(_ _ hρ) => [PPi hPPi]. + exists i, PPi. split => //. + simpl in hPPi. + move /InterpUniv_Bind_inv_nopf : hPPi. + move => [PA [hPA [hTot ?]]]. subst=>/=. + rewrite /SumSpace. + exists (subst_Tm ρ a), (subst_Tm ρ b). + split. + - hauto l:on use:Pars.substing. + - move /ha : (hρ){ha}. + move => [m][PA0][h0]h1. + move /hb : (hρ){hb}. + move => [k][PB][h2]h3. + have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst. + split => // PB0. + move : h2. asimpl => *. + have ? : PB0 = PB by eauto using InterpUniv_Functional'. by subst. +Qed. + +Lemma ST_Proj1 n Γ (a : Tm n) A B : + Γ ⊨ a ∈ TBind TSig A B -> + Γ ⊨ Proj PL a ∈ A. +Proof. + move => h ρ /[dup]hρ {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1. + move : h0 => [S][h2][h3]?. subst. + move : h1 => /=. + rewrite /SumSpace. + move => [a0 [b0 [h4 [h5 h6]]]]. + exists m, S. split => //=. + have {}h4 : rtc RPar.R (Proj PL (subst_Tm ρ a)) (Proj PL (Pair a0 b0)) by eauto using RPars.ProjCong. + have ? : RPar.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar.refl, RPar.ProjPair'. + have : rtc RPar.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r. + move => h. + apply : InterpUniv_back_clos_star; eauto. +Qed. + +Lemma ST_Proj2 n Γ (a : Tm n) A B : + Γ ⊨ a ∈ TBind TSig A B -> + Γ ⊨ Proj PR a ∈ subst_Tm (scons (Proj PL a) VarTm) B. +Proof. + move => h ρ hρ. + move : (hρ) => {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1. + move : h0 => [S][h2][h3]?. subst. + move : h1 => /=. + rewrite /SumSpace. + move => [a0 [b0 [h4 [h5 h6]]]]. + specialize h3 with (1 := h5). + move : h3 => [PB hPB]. + have hr : forall p, rtc RPar.R (Proj p (subst_Tm ρ a)) (Proj p (Pair a0 b0)) by eauto using RPars.ProjCong. + have hrl : RPar.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar.ProjPair', RPar.refl. + have hrr : RPar.R (Proj PR (Pair a0 b0)) b0 by hauto l:on use:RPar.ProjPair', RPar.refl. + exists m, PB. + asimpl. split. + - admit. + - hauto lq:on use:@relations.rtc_r, InterpUniv_back_clos_star. +Admitted.