From a1c4d5e6a8c1efde0af6b94ab7b826090b1d6b6e Mon Sep 17 00:00:00 2001 From: Yiyun Liu Date: Tue, 24 Dec 2024 22:57:28 -0500 Subject: [PATCH] Add induction principle --- theories/fp_red.v | 53 +++++++++++++++++++++++++++++++++-------------- 1 file changed, 38 insertions(+), 15 deletions(-) diff --git a/theories/fp_red.v b/theories/fp_red.v index c9488e5..56f8096 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -1,5 +1,7 @@ Require Import ssreflect. Require Import FunInd. +Require Import Arith.Wf_nat. +Require Import Psatz. From stdpp Require Import relations (rtc (..), rtc_once, rtc_r). From Hammer Require Import Tactics. Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax. @@ -790,39 +792,60 @@ Fixpoint depth_tm {n} (a : Tm n) := | Bot => 1 end. -Equations prov {n} (A : Tm n) (B : Tm (S n)) (a : Tm n) : Prop by wf (depth_tm a) lt := +Lemma depth_ren n m (ξ: fin n -> fin m) a : + depth_tm a = depth_tm (ren_Tm ξ a). +Proof. + move : m ξ. elim : n / a; scongruence. +Qed. + +Local Ltac prov_tac := sfirstorder use:depth_ren. + +#[tactic="prov_tac"]Equations prov {n} (A : Tm n) (B : Tm (S n)) (a : Tm n) : Prop by wf (depth_tm a) lt := prov A B (Pi A0 B0) := rtc Par.R A A0 /\ rtc Par.R B B0; - prov A B (Abs a) := prov A B (subst_Tm (scons Bot VarTm) a); + prov A B (Abs a) := prov (ren_Tm shift A) (ren_Tm shift B) a; prov A B (App a b) := prov A B a; prov A B (Pair a b) := prov A B a /\ prov A B b; prov A B (Proj p a) := prov A B a; prov A B Bot := False; prov A B (VarTm _) := False. -Next Obligation. -Admitted. -Next Obligation. - sfirstorder. +Lemma tm_depth_ind (P : forall n, Tm n -> Prop) : + (forall n (a : Tm n), (forall m (b : Tm m), depth_tm b < depth_tm a -> P m b) -> P n a) -> forall n a, P n a. + move => ih. + suff : forall m n (a : Tm n), depth_tm a <= m -> P n a by sfirstorder. + elim. + - move => n a h. + apply ih. lia. + - move => n ih0 m a h. + apply : ih. + move => m0 b h0. + apply : ih0. + lia. Qed. -Next Obligation. - sfirstorder. -Qed. - -Next Obligation. - sfirstorder. -Qed. +Lemma prov_ren n m (ξ : fin n -> fin m) A B a : + prov A B a -> prov (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a). +Proof. + move : n a m ξ A B. + have := (induction_ltof1 _ depth_tm). + rewrite /ltof. + move => h. epaply h. + elim /(induction_ltof1 _ depth_tm). + have := lt_wf. Lemma prov_par n (A : Tm n) B a b : prov A B a -> EPar.R a b -> prov A B b. Proof. move => + h. move : A B. elim : n a b /h. - move => n a0 a1 ha iha A B. simp prov. move /iha. - asimpl. simp prov. + + (* asimpl. simp prov. *) + admit. - hauto l:on rew:db:prov. - simp prov. - move => n a0 a1 ha iha A B. simp prov. - + - hauto l:on rew:db:prov. + - hauto l:on rew:db:prov.