diff --git a/theories/fp_red.v b/theories/fp_red.v index 45c9164..a8f96d5 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -36,7 +36,7 @@ Module Par. R a0 (Abs (App (ren_Tm shift a1) (VarTm var_zero))) | PairEta a0 a1 : R a0 a1 -> - R a0 (Pair a1 a1) + R a0 (Pair (Proj1 a1) (Proj2 a1)) (*************** Congruence ********************) | Var i : R (VarTm i) (VarTm i) @@ -138,7 +138,7 @@ Module EPar. R a0 (Abs (App (ren_Tm shift a1) (VarTm var_zero))) | PairEta a0 a1 : R a0 a1 -> - R a0 (Pair a1 a1) + R a0 (Pair (Proj1 a1) (Proj2 a1)) (*************** Congruence ********************) | Var i : R (VarTm i) (VarTm i) @@ -240,6 +240,41 @@ Proof. - hauto lq:on ctrs:rtc inv:RPar.R, rtc. Qed. +Lemma Abs_EPar n a (b : Tm n) : + EPar.R (Abs a) b -> + forall c, exists d, + EPar.R (subst_Tm (scons c VarTm) a) d /\ + rtc RPar.R (App b c) d. +Proof. + move E : (Abs a) => u h. + move : a E. + elim : n u b /h => //=. + - move => n a0 a1 ha iha b ? c. subst. + specialize iha with (1 := eq_refl) (c := c). + move : iha => [d [ih0 ih1]]. + exists d. + split => //. + apply : rtc_l. + apply RPar.AppAbs; eauto => //=. + apply RPar.refl. + by apply RPar.refl. + by asimpl. + - move => n a0 a1 ha iha a ? c. subst. + specialize iha with (1 := eq_refl) (c := c). + move : iha => [d [ih0 ih1]]. + exists (Pair (Proj1 d) (Proj2 d)). split => //. + + move { ih1}. + hauto lq:on ctrs:EPar.R. + + apply : rtc_l. + apply RPar.AppPair. + admit. + admit. + apply RPar.refl. + admit. + - admit. +Admitted. + + Lemma commutativity n (a b0 b1 : Tm n) : EPar.R a b0 -> RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c. Proof.