Add wn
This commit is contained in:
parent
602fe929bc
commit
9ab338c9e1
2 changed files with 180 additions and 50 deletions
|
@ -373,6 +373,73 @@ Module RPar.
|
||||||
move => h0 h1. apply morphing => //=.
|
move => h0 h1. apply morphing => //=.
|
||||||
qauto l:on ctrs:R inv:option.
|
qauto l:on ctrs:R inv:option.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Lemma antirenaming n m (a : Tm n) (b : Tm m) (ξ : fin n -> fin m) :
|
||||||
|
R (ren_Tm ξ a) b -> exists b0, R a b0 /\ ren_Tm ξ b0 = b.
|
||||||
|
Proof.
|
||||||
|
move E : (ren_Tm ξ a) => u h.
|
||||||
|
move : n ξ a E. elim : m u b/h.
|
||||||
|
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//=.
|
||||||
|
move => c c0 [+ ?]. subst.
|
||||||
|
case : c => //=.
|
||||||
|
move => c [?]. subst.
|
||||||
|
spec_refl.
|
||||||
|
move : iha => [c1][ih0]?. subst.
|
||||||
|
move : ihb => [c2][ih1]?. subst.
|
||||||
|
eexists. split.
|
||||||
|
apply AppAbs; eauto.
|
||||||
|
by asimpl.
|
||||||
|
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ξ []//=.
|
||||||
|
move => []//= t t0 t1 [*]. subst.
|
||||||
|
spec_refl.
|
||||||
|
move : iha => [? [*]].
|
||||||
|
move : ihb => [? [*]].
|
||||||
|
move : ihc => [? [*]].
|
||||||
|
eexists. split.
|
||||||
|
apply AppPair; hauto. subst.
|
||||||
|
by asimpl.
|
||||||
|
- move => n p a0 a1 ha iha m ξ []//= p0 []//= t [*]. subst.
|
||||||
|
spec_refl. move : iha => [b0 [? ?]]. subst.
|
||||||
|
eexists. split. apply ProjAbs; eauto. by asimpl.
|
||||||
|
- move => n p a0 a1 b0 b1 ha iha hb ihb m ξ []//= p0 []//= t t0[*].
|
||||||
|
subst. spec_refl.
|
||||||
|
move : iha => [b0 [? ?]].
|
||||||
|
move : ihb => [c0 [? ?]]. subst.
|
||||||
|
eexists. split. by eauto using ProjPair.
|
||||||
|
hauto q:on.
|
||||||
|
- move => n i m ξ []//=.
|
||||||
|
hauto l:on.
|
||||||
|
- move => n a0 a1 ha iha m ξ []//= t [*]. subst.
|
||||||
|
spec_refl.
|
||||||
|
move :iha => [b0 [? ?]]. subst.
|
||||||
|
eexists. split. by apply AbsCong; eauto.
|
||||||
|
by asimpl.
|
||||||
|
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0 [*]. subst.
|
||||||
|
spec_refl.
|
||||||
|
move : iha => [b0 [? ?]]. subst.
|
||||||
|
move : ihb => [c0 [? ?]]. subst.
|
||||||
|
eexists. split. by apply AppCong; eauto.
|
||||||
|
done.
|
||||||
|
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0[*]. subst.
|
||||||
|
spec_refl.
|
||||||
|
move : iha => [b0 [? ?]]. subst.
|
||||||
|
move : ihb => [c0 [? ?]]. subst.
|
||||||
|
eexists. split. by apply PairCong; eauto.
|
||||||
|
by asimpl.
|
||||||
|
- move => n p a0 a1 ha iha m ξ []//= p0 t [*]. subst.
|
||||||
|
spec_refl.
|
||||||
|
move : iha => [b0 [? ?]]. subst.
|
||||||
|
eexists. split. by apply ProjCong; eauto.
|
||||||
|
by asimpl.
|
||||||
|
- move => n p A0 A1 B0 B1 ha iha hB ihB m ξ []//= ? t t0 [*]. subst.
|
||||||
|
spec_refl.
|
||||||
|
move : iha => [b0 [? ?]].
|
||||||
|
move : ihB => [c0 [? ?]]. subst.
|
||||||
|
eexists. split. by apply BindCong; eauto.
|
||||||
|
by asimpl.
|
||||||
|
- move => n n0 ξ []//=. hauto l:on.
|
||||||
|
- move => n i n0 ξ []//=. hauto l:on.
|
||||||
|
Qed.
|
||||||
End RPar.
|
End RPar.
|
||||||
|
|
||||||
Module ERed.
|
Module ERed.
|
||||||
|
@ -1863,8 +1930,70 @@ Proof.
|
||||||
hauto l:on.
|
hauto l:on.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma join_substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
|
Lemma join_substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
|
||||||
join a b ->
|
join a b ->
|
||||||
join (subst_Tm ρ a) (subst_Tm ρ b).
|
join (subst_Tm ρ a) (subst_Tm ρ b).
|
||||||
Proof. hauto lq:on unfold:join use:Pars.substing. Qed.
|
Proof. hauto lq:on unfold:join use:Pars.substing. Qed.
|
||||||
|
|
||||||
|
|
||||||
|
Fixpoint ne {n} (a : Tm n) :=
|
||||||
|
match a with
|
||||||
|
| VarTm i => true
|
||||||
|
| TBind _ A B => nf A && nf B
|
||||||
|
| Bot => false
|
||||||
|
| App a b => ne a && nf b
|
||||||
|
| Abs a => false
|
||||||
|
| Univ _ => false
|
||||||
|
| Proj _ a => ne a
|
||||||
|
| Pair _ _ => false
|
||||||
|
end
|
||||||
|
with nf {n} (a : Tm n) :=
|
||||||
|
match a with
|
||||||
|
| VarTm i => true
|
||||||
|
| TBind _ A B => nf A && nf B
|
||||||
|
| Bot => true
|
||||||
|
| App a b => ne a && nf b
|
||||||
|
| Abs a => nf a
|
||||||
|
| Univ _ => true
|
||||||
|
| Proj _ a => ne a
|
||||||
|
| Pair a b => nf a && nf b
|
||||||
|
end.
|
||||||
|
|
||||||
|
Lemma ne_nf n a : @ne n a -> nf a.
|
||||||
|
Proof. elim : a => //=. Qed.
|
||||||
|
|
||||||
|
Definition wn {n} (a : Tm n) := exists b, rtc RPar.R a b /\ nf b.
|
||||||
|
Definition wne {n} (a : Tm n) := exists b, rtc RPar.R a b /\ ne b.
|
||||||
|
|
||||||
|
(* Weakly neutral implies weakly normal *)
|
||||||
|
Lemma wne_wn n a : @wne n a -> wn a.
|
||||||
|
Proof. sfirstorder use:ne_nf. Qed.
|
||||||
|
|
||||||
|
(* Normal implies weakly normal *)
|
||||||
|
Lemma nf_wn n v : @nf n v -> wn v.
|
||||||
|
Proof. sfirstorder ctrs:rtc. Qed.
|
||||||
|
|
||||||
|
Lemma nf_refl n (a b : Tm n) (h : RPar.R a b) : (nf a -> b = a) /\ (ne a -> b = a).
|
||||||
|
Proof.
|
||||||
|
elim : a b /h => //=; solve [hauto b:on].
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma ne_nf_ren n m (a : Tm n) (ξ : fin n -> fin m) :
|
||||||
|
(ne a <-> ne (ren_Tm ξ a)) /\ (nf a <-> nf (ren_Tm ξ a)).
|
||||||
|
Proof.
|
||||||
|
move : m ξ. elim : n / a => //=; solve [hauto b:on].
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma wne_app n (a b : Tm n) :
|
||||||
|
wne a -> wn b -> wne (App a b).
|
||||||
|
Proof.
|
||||||
|
move => [a0 [? ?]] [b0 [? ?]].
|
||||||
|
exists (App a0 b0). hauto b:on use:RPars.AppCong.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma wn_abs (a : tm) (h : wn a) : wn (tAbs a).
|
||||||
|
Proof.
|
||||||
|
move : h => [v [? ?]].
|
||||||
|
exists (tAbs v).
|
||||||
|
eauto using S_Abs.
|
||||||
|
Qed.
|
||||||
|
|
|
@ -6,18 +6,19 @@ Require Import ssreflect ssrbool.
|
||||||
Require Import Logic.PropExtensionality (propositional_extensionality).
|
Require Import Logic.PropExtensionality (propositional_extensionality).
|
||||||
From stdpp Require Import relations (rtc(..), rtc_subrel).
|
From stdpp Require Import relations (rtc(..), rtc_subrel).
|
||||||
Import Psatz.
|
Import Psatz.
|
||||||
Definition ProdSpace (PA : Tm 0 -> Prop)
|
|
||||||
(PF : Tm 0 -> (Tm 0 -> Prop) -> Prop) b : Prop :=
|
Definition ProdSpace {n} (PA : Tm n -> Prop)
|
||||||
|
(PF : Tm n -> (Tm n -> Prop) -> Prop) b : Prop :=
|
||||||
forall a PB, PA a -> PF a PB -> PB (App b a).
|
forall a PB, PA a -> PF a PB -> PB (App b a).
|
||||||
|
|
||||||
Definition SumSpace (PA : Tm 0 -> Prop)
|
Definition SumSpace {n} (PA : Tm n -> Prop)
|
||||||
(PF : Tm 0 -> (Tm 0 -> Prop) -> Prop) t : Prop :=
|
(PF : Tm n -> (Tm n -> Prop) -> Prop) t : Prop :=
|
||||||
exists a b, rtc RPar.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
|
exists a b, rtc RPar.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
|
||||||
|
|
||||||
Definition BindSpace p := if p is TPi then ProdSpace else SumSpace.
|
Definition BindSpace {n} p := if p is TPi then @ProdSpace n else SumSpace.
|
||||||
|
|
||||||
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
|
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
|
||||||
Inductive InterpExt i (I : nat -> Tm 0 -> Prop) : Tm 0 -> (Tm 0 -> Prop) -> Prop :=
|
Inductive InterpExt {n} i (I : nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) -> Prop :=
|
||||||
| InterpExt_Bind p A B PA PF :
|
| InterpExt_Bind p A B PA PF :
|
||||||
⟦ A ⟧ i ;; I ↘ PA ->
|
⟦ A ⟧ i ;; I ↘ PA ->
|
||||||
(forall a, PA a -> exists PB, PF a PB) ->
|
(forall a, PA a -> exists PB, PF a PB) ->
|
||||||
|
@ -34,7 +35,7 @@ Inductive InterpExt i (I : nat -> Tm 0 -> Prop) : Tm 0 -> (Tm 0 -> Prop) -> Prop
|
||||||
⟦ A ⟧ i ;; I ↘ PA
|
⟦ A ⟧ i ;; I ↘ PA
|
||||||
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
|
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
|
||||||
|
|
||||||
Lemma InterpExt_Univ' i I j (PF : Tm 0 -> Prop) :
|
Lemma InterpExt_Univ' n i I j (PF : Tm n -> Prop) :
|
||||||
PF = I j ->
|
PF = I j ->
|
||||||
j < i ->
|
j < i ->
|
||||||
⟦ Univ j ⟧ i ;; I ↘ PF.
|
⟦ Univ j ⟧ i ;; I ↘ PF.
|
||||||
|
@ -42,16 +43,16 @@ Proof. hauto lq:on ctrs:InterpExt. Qed.
|
||||||
|
|
||||||
Infix "<?" := Compare_dec.lt_dec (at level 60).
|
Infix "<?" := Compare_dec.lt_dec (at level 60).
|
||||||
|
|
||||||
Equations InterpUnivN (i : nat) : Tm 0 -> (Tm 0 -> Prop) -> Prop by wf i lt :=
|
Equations InterpUnivN n (i : nat) : Tm n -> (Tm n -> Prop) -> Prop by wf i lt :=
|
||||||
InterpUnivN i := @InterpExt i
|
InterpUnivN n i := @InterpExt n i
|
||||||
(fun j A =>
|
(fun j A =>
|
||||||
match j <? i with
|
match j <? i with
|
||||||
| left _ => exists PA, InterpUnivN j A PA
|
| left _ => exists PA, InterpUnivN n j A PA
|
||||||
| right _ => False
|
| right _ => False
|
||||||
end).
|
end).
|
||||||
Arguments InterpUnivN .
|
Arguments InterpUnivN {n}.
|
||||||
|
|
||||||
Lemma InterpExt_lt_impl i I I' A (PA : Tm 0 -> Prop) :
|
Lemma InterpExt_lt_impl n i I I' A (PA : Tm n -> Prop) :
|
||||||
(forall j, j < i -> I j = I' j) ->
|
(forall j, j < i -> I j = I' j) ->
|
||||||
⟦ A ⟧ i ;; I ↘ PA ->
|
⟦ A ⟧ i ;; I ↘ PA ->
|
||||||
⟦ A ⟧ i ;; I' ↘ PA.
|
⟦ A ⟧ i ;; I' ↘ PA.
|
||||||
|
@ -63,7 +64,7 @@ Proof.
|
||||||
- hauto lq:on ctrs:InterpExt.
|
- hauto lq:on ctrs:InterpExt.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpExt_lt_eq i I I' A (PA : Tm 0 -> Prop) :
|
Lemma InterpExt_lt_eq n i I I' A (PA : Tm n -> Prop) :
|
||||||
(forall j, j < i -> I j = I' j) ->
|
(forall j, j < i -> I j = I' j) ->
|
||||||
⟦ A ⟧ i ;; I ↘ PA =
|
⟦ A ⟧ i ;; I ↘ PA =
|
||||||
⟦ A ⟧ i ;; I' ↘ PA.
|
⟦ A ⟧ i ;; I' ↘ PA.
|
||||||
|
@ -75,8 +76,8 @@ Qed.
|
||||||
|
|
||||||
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
|
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
|
||||||
|
|
||||||
Lemma InterpUnivN_nolt i :
|
Lemma InterpUnivN_nolt n i :
|
||||||
InterpUnivN i = InterpExt i (fun j (A : Tm 0) => exists PA, ⟦ A ⟧ j ↘ PA).
|
@InterpUnivN n i = @InterpExt n i (fun j (A : Tm n) => exists PA, ⟦ A ⟧ j ↘ PA).
|
||||||
Proof.
|
Proof.
|
||||||
simp InterpUnivN.
|
simp InterpUnivN.
|
||||||
extensionality A. extensionality PA.
|
extensionality A. extensionality PA.
|
||||||
|
@ -92,9 +93,9 @@ Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n):
|
||||||
RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
|
RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
|
||||||
Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed.
|
Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed.
|
||||||
|
|
||||||
Lemma InterpExt_Bind_inv p i I (A : Tm 0) B P
|
Lemma InterpExt_Bind_inv n p i I (A : Tm n) B P
|
||||||
(h : ⟦ TBind p A B ⟧ i ;; I ↘ P) :
|
(h : ⟦ TBind p A B ⟧ i ;; I ↘ P) :
|
||||||
exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop),
|
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
|
||||||
⟦ A ⟧ i ;; I ↘ PA /\
|
⟦ A ⟧ i ;; I ↘ PA /\
|
||||||
(forall a, PA a -> exists PB, PF a PB) /\
|
(forall a, PA a -> exists PB, PF a PB) /\
|
||||||
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\
|
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\
|
||||||
|
@ -109,8 +110,8 @@ Proof.
|
||||||
hauto lq:on ctrs:InterpExt use:RPar_substone.
|
hauto lq:on ctrs:InterpExt use:RPar_substone.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpExt_Univ_inv i I j P
|
Lemma InterpExt_Univ_inv n i I j P
|
||||||
(h : ⟦ Univ j ⟧ i ;; I ↘ P) :
|
(h : ⟦ Univ j : Tm n ⟧ i ;; I ↘ P) :
|
||||||
P = I j /\ j < i.
|
P = I j /\ j < i.
|
||||||
Proof.
|
Proof.
|
||||||
move : h.
|
move : h.
|
||||||
|
@ -120,7 +121,7 @@ Proof.
|
||||||
- hauto lq:on rew:off inv:RPar.R.
|
- hauto lq:on rew:off inv:RPar.R.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpExt_Bind_nopf p i I (A : Tm 0) B PA :
|
Lemma InterpExt_Bind_nopf n p i I (A : Tm n) B PA :
|
||||||
⟦ A ⟧ i ;; I ↘ PA ->
|
⟦ A ⟧ i ;; I ↘ PA ->
|
||||||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) ->
|
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) ->
|
||||||
⟦ TBind p A B ⟧ i ;; I ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB)).
|
⟦ TBind p A B ⟧ i ;; I ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB)).
|
||||||
|
@ -128,7 +129,7 @@ Proof.
|
||||||
move => h0 h1. apply InterpExt_Bind =>//.
|
move => h0 h1. apply InterpExt_Bind =>//.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpUnivN_Fun_nopf p i (A : Tm 0) B PA :
|
Lemma InterpUnivN_Fun_nopf n p i (A : Tm n) B PA :
|
||||||
⟦ A ⟧ i ↘ PA ->
|
⟦ A ⟧ i ↘ PA ->
|
||||||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) ->
|
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) ->
|
||||||
⟦ TBind p A B ⟧ i ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB)).
|
⟦ TBind p A B ⟧ i ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB)).
|
||||||
|
@ -136,7 +137,7 @@ Proof.
|
||||||
hauto l:on use:InterpExt_Bind_nopf rew:db:InterpUniv.
|
hauto l:on use:InterpExt_Bind_nopf rew:db:InterpUniv.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpExt_cumulative i j I (A : Tm 0) PA :
|
Lemma InterpExt_cumulative n i j I (A : Tm n) PA :
|
||||||
i <= j ->
|
i <= j ->
|
||||||
⟦ A ⟧ i ;; I ↘ PA ->
|
⟦ A ⟧ i ;; I ↘ PA ->
|
||||||
⟦ A ⟧ j ;; I ↘ PA.
|
⟦ A ⟧ j ;; I ↘ PA.
|
||||||
|
@ -146,14 +147,14 @@ Proof.
|
||||||
hauto l:on ctrs:InterpExt solve+:(by lia).
|
hauto l:on ctrs:InterpExt solve+:(by lia).
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpUnivN_cumulative i (A : Tm 0) PA :
|
Lemma InterpUnivN_cumulative n i (A : Tm n) PA :
|
||||||
⟦ A ⟧ i ↘ PA -> forall j, i <= j ->
|
⟦ A ⟧ i ↘ PA -> forall j, i <= j ->
|
||||||
⟦ A ⟧ j ↘ PA.
|
⟦ A ⟧ j ↘ PA.
|
||||||
Proof.
|
Proof.
|
||||||
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
|
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpExt_preservation i I (A : Tm 0) B P (h : InterpExt i I A P) :
|
Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) :
|
||||||
RPar.R A B ->
|
RPar.R A B ->
|
||||||
⟦ B ⟧ i ;; I ↘ P.
|
⟦ B ⟧ i ;; I ↘ P.
|
||||||
Proof.
|
Proof.
|
||||||
|
@ -171,32 +172,32 @@ Proof.
|
||||||
hauto lq:on ctrs:InterpExt.
|
hauto lq:on ctrs:InterpExt.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpUnivN_preservation i (A : Tm 0) B P (h : ⟦ A ⟧ i ↘ P) :
|
Lemma InterpUnivN_preservation n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) :
|
||||||
RPar.R A B ->
|
RPar.R A B ->
|
||||||
⟦ B ⟧ i ↘ P.
|
⟦ B ⟧ i ↘ P.
|
||||||
Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed.
|
Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed.
|
||||||
|
|
||||||
Lemma InterpExt_back_preservation_star i I (A : Tm 0) B P (h : ⟦ B ⟧ i ;; I ↘ P) :
|
Lemma InterpExt_back_preservation_star n i I (A : Tm n) B P (h : ⟦ B ⟧ i ;; I ↘ P) :
|
||||||
rtc RPar.R A B ->
|
rtc RPar.R A B ->
|
||||||
⟦ A ⟧ i ;; I ↘ P.
|
⟦ A ⟧ i ;; I ↘ P.
|
||||||
Proof. induction 1; hauto l:on ctrs:InterpExt. Qed.
|
Proof. induction 1; hauto l:on ctrs:InterpExt. Qed.
|
||||||
|
|
||||||
Lemma InterpExt_preservation_star i I (A : Tm 0) B P (h : ⟦ A ⟧ i ;; I ↘ P) :
|
Lemma InterpExt_preservation_star n i I (A : Tm n) B P (h : ⟦ A ⟧ i ;; I ↘ P) :
|
||||||
rtc RPar.R A B ->
|
rtc RPar.R A B ->
|
||||||
⟦ B ⟧ i ;; I ↘ P.
|
⟦ B ⟧ i ;; I ↘ P.
|
||||||
Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed.
|
Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed.
|
||||||
|
|
||||||
Lemma InterpUnivN_preservation_star i (A : Tm 0) B P (h : ⟦ A ⟧ i ↘ P) :
|
Lemma InterpUnivN_preservation_star n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) :
|
||||||
rtc RPar.R A B ->
|
rtc RPar.R A B ->
|
||||||
⟦ B ⟧ i ↘ P.
|
⟦ B ⟧ i ↘ P.
|
||||||
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed.
|
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed.
|
||||||
|
|
||||||
Lemma InterpUnivN_back_preservation_star i (A : Tm 0) B P (h : ⟦ B ⟧ i ↘ P) :
|
Lemma InterpUnivN_back_preservation_star n i (A : Tm n) B P (h : ⟦ B ⟧ i ↘ P) :
|
||||||
rtc RPar.R A B ->
|
rtc RPar.R A B ->
|
||||||
⟦ A ⟧ i ↘ P.
|
⟦ A ⟧ i ↘ P.
|
||||||
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed.
|
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed.
|
||||||
|
|
||||||
Lemma InterpExtInv i I (A : Tm 0) PA :
|
Lemma InterpExtInv n i I (A : Tm n) PA :
|
||||||
⟦ A ⟧ i ;; I ↘ PA ->
|
⟦ A ⟧ i ;; I ↘ PA ->
|
||||||
exists B, hfb B /\ rtc RPar.R A B /\ ⟦ B ⟧ i ;; I ↘ PA.
|
exists B, hfb B /\ rtc RPar.R A B /\ ⟦ B ⟧ i ;; I ↘ PA.
|
||||||
Proof.
|
Proof.
|
||||||
|
@ -210,17 +211,17 @@ Proof.
|
||||||
- hauto lq:on ctrs:rtc.
|
- hauto lq:on ctrs:rtc.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma RPars_Pars (A B : Tm 0) :
|
Lemma RPars_Pars (A B : Tm n) :
|
||||||
rtc RPar.R A B ->
|
rtc RPar.R A B ->
|
||||||
rtc Par.R A B.
|
rtc Par.R A B.
|
||||||
Proof. hauto lq:on use:RPar_Par, rtc_subrel. Qed.
|
Proof. hauto lq:on use:RPar_Par, rtc_subrel. Qed.
|
||||||
|
|
||||||
Lemma RPars_join (A B : Tm 0) :
|
Lemma RPars_join (A B : Tm n) :
|
||||||
rtc RPar.R A B -> join A B.
|
rtc RPar.R A B -> join A B.
|
||||||
Proof. hauto lq:on ctrs:rtc use:RPars_Pars. Qed.
|
Proof. hauto lq:on ctrs:rtc use:RPars_Pars. Qed.
|
||||||
|
|
||||||
Lemma bindspace_iff p (PA : Tm 0 -> Prop) PF PF0 b :
|
Lemma bindspace_iff p (PA : Tm n -> Prop) PF PF0 b :
|
||||||
(forall (a : Tm 0) (PB PB0 : Tm 0 -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
|
(forall (a : Tm n) (PB PB0 : Tm n -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
|
||||||
(forall a, PA a -> exists PB, PF a PB) ->
|
(forall a, PA a -> exists PB, PF a PB) ->
|
||||||
(forall a, PA a -> exists PB0, PF0 a PB0) ->
|
(forall a, PA a -> exists PB0, PF0 a PB0) ->
|
||||||
(BindSpace p PA PF b <-> BindSpace p PA PF0 b).
|
(BindSpace p PA PF b <-> BindSpace p PA PF0 b).
|
||||||
|
@ -241,7 +242,7 @@ Proof.
|
||||||
hauto lq:on rew:off.
|
hauto lq:on rew:off.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpExt_Join i I (A B : Tm 0) PA PB :
|
Lemma InterpExt_Join i I (A B : Tm n) PA PB :
|
||||||
⟦ A ⟧ i ;; I ↘ PA ->
|
⟦ A ⟧ i ;; I ↘ PA ->
|
||||||
⟦ B ⟧ i ;; I ↘ PB ->
|
⟦ B ⟧ i ;; I ↘ PB ->
|
||||||
join A B ->
|
join A B ->
|
||||||
|
@ -281,7 +282,7 @@ Proof.
|
||||||
exfalso.
|
exfalso.
|
||||||
eauto using join_univ_pi_contra.
|
eauto using join_univ_pi_contra.
|
||||||
+ move => m _ [/RPars_join h0 + h1].
|
+ move => m _ [/RPars_join h0 + h1].
|
||||||
have /join_univ_inj {h0 h1} ? : join (Univ j : Tm 0) (Univ m) by eauto using join_transitive.
|
have /join_univ_inj {h0 h1} ? : join (Univ j : Tm n) (Univ m) by eauto using join_transitive.
|
||||||
subst.
|
subst.
|
||||||
move /InterpExt_Univ_inv. firstorder.
|
move /InterpExt_Univ_inv. firstorder.
|
||||||
- move => A A0 PA h.
|
- move => A A0 PA h.
|
||||||
|
@ -289,16 +290,16 @@ Proof.
|
||||||
eauto using join_transitive.
|
eauto using join_transitive.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpUniv_Join i (A B : Tm 0) PA PB :
|
Lemma InterpUniv_Join i (A B : Tm n) PA PB :
|
||||||
⟦ A ⟧ i ↘ PA ->
|
⟦ A ⟧ i ↘ PA ->
|
||||||
⟦ B ⟧ i ↘ PB ->
|
⟦ B ⟧ i ↘ PB ->
|
||||||
join A B ->
|
join A B ->
|
||||||
PA = PB.
|
PA = PB.
|
||||||
Proof. hauto l:on use:InterpExt_Join rew:db:InterpUniv. Qed.
|
Proof. hauto l:on use:InterpExt_Join rew:db:InterpUniv. Qed.
|
||||||
|
|
||||||
Lemma InterpUniv_Bind_inv p i (A : Tm 0) B P
|
Lemma InterpUniv_Bind_inv p i (A : Tm n) B P
|
||||||
(h : ⟦ TBind p A B ⟧ i ↘ P) :
|
(h : ⟦ TBind p A B ⟧ i ↘ P) :
|
||||||
exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop),
|
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
|
||||||
⟦ A ⟧ i ↘ PA /\
|
⟦ A ⟧ i ↘ PA /\
|
||||||
(forall a, PA a -> exists PB, PF a PB) /\
|
(forall a, PA a -> exists PB, PF a PB) /\
|
||||||
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) /\
|
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) /\
|
||||||
|
@ -307,22 +308,22 @@ Proof. hauto l:on use:InterpExt_Bind_inv rew:db:InterpUniv. Qed.
|
||||||
|
|
||||||
Lemma InterpUniv_Univ_inv i j P
|
Lemma InterpUniv_Univ_inv i j P
|
||||||
(h : ⟦ Univ j ⟧ i ↘ P) :
|
(h : ⟦ Univ j ⟧ i ↘ P) :
|
||||||
P = (fun (A : Tm 0) => exists PA, ⟦ A ⟧ j ↘ PA) /\ j < i.
|
P = (fun (A : Tm n) => exists PA, ⟦ A ⟧ j ↘ PA) /\ j < i.
|
||||||
Proof. hauto l:on use:InterpExt_Univ_inv rew:db:InterpUniv. Qed.
|
Proof. hauto l:on use:InterpExt_Univ_inv rew:db:InterpUniv. Qed.
|
||||||
|
|
||||||
Lemma InterpExt_Functional i I (A B : Tm 0) PA PB :
|
Lemma InterpExt_Functional i I (A B : Tm n) PA PB :
|
||||||
⟦ A ⟧ i ;; I ↘ PA ->
|
⟦ A ⟧ i ;; I ↘ PA ->
|
||||||
⟦ A ⟧ i ;; I ↘ PB ->
|
⟦ A ⟧ i ;; I ↘ PB ->
|
||||||
PA = PB.
|
PA = PB.
|
||||||
Proof. hauto use:InterpExt_Join, join_refl. Qed.
|
Proof. hauto use:InterpExt_Join, join_refl. Qed.
|
||||||
|
|
||||||
Lemma InterpUniv_Functional i (A : Tm 0) PA PB :
|
Lemma InterpUniv_Functional i (A : Tm n) PA PB :
|
||||||
⟦ A ⟧ i ↘ PA ->
|
⟦ A ⟧ i ↘ PA ->
|
||||||
⟦ A ⟧ i ↘ PB ->
|
⟦ A ⟧ i ↘ PB ->
|
||||||
PA = PB.
|
PA = PB.
|
||||||
Proof. hauto use:InterpExt_Functional rew:db:InterpUniv. Qed.
|
Proof. hauto use:InterpExt_Functional rew:db:InterpUniv. Qed.
|
||||||
|
|
||||||
Lemma InterpUniv_Join' i j (A B : Tm 0) PA PB :
|
Lemma InterpUniv_Join' i j (A B : Tm n) PA PB :
|
||||||
⟦ A ⟧ i ↘ PA ->
|
⟦ A ⟧ i ↘ PA ->
|
||||||
⟦ B ⟧ j ↘ PB ->
|
⟦ B ⟧ j ↘ PB ->
|
||||||
join A B ->
|
join A B ->
|
||||||
|
@ -344,7 +345,7 @@ Proof.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpExt_Bind_inv_nopf i I p A B P (h : ⟦TBind p A B ⟧ i ;; I ↘ P) :
|
Lemma InterpExt_Bind_inv_nopf i I p A B P (h : ⟦TBind p A B ⟧ i ;; I ↘ P) :
|
||||||
exists (PA : Tm 0 -> Prop),
|
exists (PA : Tm n -> Prop),
|
||||||
⟦ A ⟧ i ;; I ↘ PA /\
|
⟦ A ⟧ i ;; I ↘ PA /\
|
||||||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\
|
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\
|
||||||
P = BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB).
|
P = BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB).
|
||||||
|
@ -366,13 +367,13 @@ Proof.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpUniv_Bind_inv_nopf i p A B P (h : ⟦TBind p A B ⟧ i ↘ P) :
|
Lemma InterpUniv_Bind_inv_nopf i p A B P (h : ⟦TBind p A B ⟧ i ↘ P) :
|
||||||
exists (PA : Tm 0 -> Prop),
|
exists (PA : Tm n -> Prop),
|
||||||
⟦ A ⟧ i ↘ PA /\
|
⟦ A ⟧ i ↘ PA /\
|
||||||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) /\
|
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) /\
|
||||||
P = BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB).
|
P = BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB).
|
||||||
Proof. hauto l:on use:InterpExt_Bind_inv_nopf rew:db:InterpUniv. Qed.
|
Proof. hauto l:on use:InterpExt_Bind_inv_nopf rew:db:InterpUniv. Qed.
|
||||||
|
|
||||||
Lemma InterpExt_back_clos i I (A : Tm 0) PA :
|
Lemma InterpExt_back_clos i I (A : Tm n) PA :
|
||||||
(forall j, forall a b, (RPar.R a b) -> I j b -> I j a) ->
|
(forall j, forall a b, (RPar.R a b) -> I j b -> I j a) ->
|
||||||
⟦ A ⟧ i ;; I ↘ PA ->
|
⟦ A ⟧ i ;; I ↘ PA ->
|
||||||
forall a b, (RPar.R a b) ->
|
forall a b, (RPar.R a b) ->
|
||||||
|
@ -390,7 +391,7 @@ Proof.
|
||||||
- eauto.
|
- eauto.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpUniv_back_clos i (A : Tm 0) PA :
|
Lemma InterpUniv_back_clos i (A : Tm n) PA :
|
||||||
⟦ A ⟧ i ↘ PA ->
|
⟦ A ⟧ i ↘ PA ->
|
||||||
forall a b, (RPar.R a b) ->
|
forall a b, (RPar.R a b) ->
|
||||||
PA b -> PA a.
|
PA b -> PA a.
|
||||||
|
@ -400,7 +401,7 @@ Proof.
|
||||||
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
|
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpUniv_back_clos_star i (A : Tm 0) PA :
|
Lemma InterpUniv_back_clos_star i (A : Tm n) PA :
|
||||||
⟦ A ⟧ i ↘ PA ->
|
⟦ A ⟧ i ↘ PA ->
|
||||||
forall a b, rtc RPar.R a b ->
|
forall a b, rtc RPar.R a b ->
|
||||||
PA b -> PA a.
|
PA b -> PA a.
|
||||||
|
@ -410,7 +411,7 @@ Proof.
|
||||||
hauto lq:on use:InterpUniv_back_clos.
|
hauto lq:on use:InterpUniv_back_clos.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Definition ρ_ok {n} Γ (ρ : fin n -> Tm 0) := forall i m PA,
|
Definition ρ_ok {n} Γ (ρ : fin n -> Tm n) := forall i m PA,
|
||||||
⟦ subst_Tm ρ (Γ i) ⟧ m ↘ PA -> PA (ρ i).
|
⟦ subst_Tm ρ (Γ i) ⟧ m ↘ PA -> PA (ρ i).
|
||||||
|
|
||||||
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists m PA, ⟦ subst_Tm ρ A ⟧ m ↘ PA /\ PA (subst_Tm ρ a).
|
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists m PA, ⟦ subst_Tm ρ A ⟧ m ↘ PA /\ PA (subst_Tm ρ a).
|
||||||
|
|
Loading…
Add table
Reference in a new issue