Add wn
This commit is contained in:
parent
602fe929bc
commit
9ab338c9e1
2 changed files with 180 additions and 50 deletions
|
@ -373,6 +373,73 @@ Module RPar.
|
|||
move => h0 h1. apply morphing => //=.
|
||||
qauto l:on ctrs:R inv:option.
|
||||
Qed.
|
||||
|
||||
Lemma antirenaming n m (a : Tm n) (b : Tm m) (ξ : fin n -> fin m) :
|
||||
R (ren_Tm ξ a) b -> exists b0, R a b0 /\ ren_Tm ξ b0 = b.
|
||||
Proof.
|
||||
move E : (ren_Tm ξ a) => u h.
|
||||
move : n ξ a E. elim : m u b/h.
|
||||
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//=.
|
||||
move => c c0 [+ ?]. subst.
|
||||
case : c => //=.
|
||||
move => c [?]. subst.
|
||||
spec_refl.
|
||||
move : iha => [c1][ih0]?. subst.
|
||||
move : ihb => [c2][ih1]?. subst.
|
||||
eexists. split.
|
||||
apply AppAbs; eauto.
|
||||
by asimpl.
|
||||
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ξ []//=.
|
||||
move => []//= t t0 t1 [*]. subst.
|
||||
spec_refl.
|
||||
move : iha => [? [*]].
|
||||
move : ihb => [? [*]].
|
||||
move : ihc => [? [*]].
|
||||
eexists. split.
|
||||
apply AppPair; hauto. subst.
|
||||
by asimpl.
|
||||
- move => n p a0 a1 ha iha m ξ []//= p0 []//= t [*]. subst.
|
||||
spec_refl. move : iha => [b0 [? ?]]. subst.
|
||||
eexists. split. apply ProjAbs; eauto. by asimpl.
|
||||
- move => n p a0 a1 b0 b1 ha iha hb ihb m ξ []//= p0 []//= t t0[*].
|
||||
subst. spec_refl.
|
||||
move : iha => [b0 [? ?]].
|
||||
move : ihb => [c0 [? ?]]. subst.
|
||||
eexists. split. by eauto using ProjPair.
|
||||
hauto q:on.
|
||||
- move => n i m ξ []//=.
|
||||
hauto l:on.
|
||||
- move => n a0 a1 ha iha m ξ []//= t [*]. subst.
|
||||
spec_refl.
|
||||
move :iha => [b0 [? ?]]. subst.
|
||||
eexists. split. by apply AbsCong; eauto.
|
||||
by asimpl.
|
||||
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0 [*]. subst.
|
||||
spec_refl.
|
||||
move : iha => [b0 [? ?]]. subst.
|
||||
move : ihb => [c0 [? ?]]. subst.
|
||||
eexists. split. by apply AppCong; eauto.
|
||||
done.
|
||||
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0[*]. subst.
|
||||
spec_refl.
|
||||
move : iha => [b0 [? ?]]. subst.
|
||||
move : ihb => [c0 [? ?]]. subst.
|
||||
eexists. split. by apply PairCong; eauto.
|
||||
by asimpl.
|
||||
- move => n p a0 a1 ha iha m ξ []//= p0 t [*]. subst.
|
||||
spec_refl.
|
||||
move : iha => [b0 [? ?]]. subst.
|
||||
eexists. split. by apply ProjCong; eauto.
|
||||
by asimpl.
|
||||
- move => n p A0 A1 B0 B1 ha iha hB ihB m ξ []//= ? t t0 [*]. subst.
|
||||
spec_refl.
|
||||
move : iha => [b0 [? ?]].
|
||||
move : ihB => [c0 [? ?]]. subst.
|
||||
eexists. split. by apply BindCong; eauto.
|
||||
by asimpl.
|
||||
- move => n n0 ξ []//=. hauto l:on.
|
||||
- move => n i n0 ξ []//=. hauto l:on.
|
||||
Qed.
|
||||
End RPar.
|
||||
|
||||
Module ERed.
|
||||
|
@ -1863,8 +1930,70 @@ Proof.
|
|||
hauto l:on.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma join_substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
|
||||
join a b ->
|
||||
join (subst_Tm ρ a) (subst_Tm ρ b).
|
||||
Proof. hauto lq:on unfold:join use:Pars.substing. Qed.
|
||||
|
||||
|
||||
Fixpoint ne {n} (a : Tm n) :=
|
||||
match a with
|
||||
| VarTm i => true
|
||||
| TBind _ A B => nf A && nf B
|
||||
| Bot => false
|
||||
| App a b => ne a && nf b
|
||||
| Abs a => false
|
||||
| Univ _ => false
|
||||
| Proj _ a => ne a
|
||||
| Pair _ _ => false
|
||||
end
|
||||
with nf {n} (a : Tm n) :=
|
||||
match a with
|
||||
| VarTm i => true
|
||||
| TBind _ A B => nf A && nf B
|
||||
| Bot => true
|
||||
| App a b => ne a && nf b
|
||||
| Abs a => nf a
|
||||
| Univ _ => true
|
||||
| Proj _ a => ne a
|
||||
| Pair a b => nf a && nf b
|
||||
end.
|
||||
|
||||
Lemma ne_nf n a : @ne n a -> nf a.
|
||||
Proof. elim : a => //=. Qed.
|
||||
|
||||
Definition wn {n} (a : Tm n) := exists b, rtc RPar.R a b /\ nf b.
|
||||
Definition wne {n} (a : Tm n) := exists b, rtc RPar.R a b /\ ne b.
|
||||
|
||||
(* Weakly neutral implies weakly normal *)
|
||||
Lemma wne_wn n a : @wne n a -> wn a.
|
||||
Proof. sfirstorder use:ne_nf. Qed.
|
||||
|
||||
(* Normal implies weakly normal *)
|
||||
Lemma nf_wn n v : @nf n v -> wn v.
|
||||
Proof. sfirstorder ctrs:rtc. Qed.
|
||||
|
||||
Lemma nf_refl n (a b : Tm n) (h : RPar.R a b) : (nf a -> b = a) /\ (ne a -> b = a).
|
||||
Proof.
|
||||
elim : a b /h => //=; solve [hauto b:on].
|
||||
Qed.
|
||||
|
||||
Lemma ne_nf_ren n m (a : Tm n) (ξ : fin n -> fin m) :
|
||||
(ne a <-> ne (ren_Tm ξ a)) /\ (nf a <-> nf (ren_Tm ξ a)).
|
||||
Proof.
|
||||
move : m ξ. elim : n / a => //=; solve [hauto b:on].
|
||||
Qed.
|
||||
|
||||
Lemma wne_app n (a b : Tm n) :
|
||||
wne a -> wn b -> wne (App a b).
|
||||
Proof.
|
||||
move => [a0 [? ?]] [b0 [? ?]].
|
||||
exists (App a0 b0). hauto b:on use:RPars.AppCong.
|
||||
Qed.
|
||||
|
||||
Lemma wn_abs (a : tm) (h : wn a) : wn (tAbs a).
|
||||
Proof.
|
||||
move : h => [v [? ?]].
|
||||
exists (tAbs v).
|
||||
eauto using S_Abs.
|
||||
Qed.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue