Add the logical relation

This commit is contained in:
Yiyun Liu 2024-12-27 01:38:25 -05:00
parent 1bd6a8508e
commit 8e0f9a1e0a

View file

@ -1,4 +1,180 @@
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
Require Import fp_red.
From Hammer Require Import Tactics.
From Equations Require Import Equations.
Require Import ssreflect.
Require Import Logic.PropExtensionality (propositional_extensionality).
From stdpp Require Import relations (rtc(..)).
Definition ProdSpace {n} (PA : Tm n -> Prop)
(PF : Tm n -> (Tm n -> Prop) -> Prop) : Tm n -> Prop :=
fun b => forall a PB, PA a -> PF a PB -> PB (App b a).
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
Inductive InterpExt {n} i (I : forall n, nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) -> Prop :=
| InterpExt_Fun A B PA PF :
A i ;; I PA ->
(forall a, PA a -> exists PB, PF a PB) ->
(forall a PB, PF a PB -> subst_Tm (scons a VarTm) B i ;; I PB) ->
Pi A B i ;; I (ProdSpace PA PF)
| InterpExt_Univ j :
j < i ->
Univ j i ;; I (I n j)
| InterpExt_Step A A0 PA :
RPar.R A A0 ->
A0 i ;; I PA ->
A i ;; I PA
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
Lemma InterpExt_Univ' {n} i I j (PF : Tm n -> Prop) :
PF = I n j ->
j < i ->
Univ j i ;; I PF.
Proof. hauto lq:on ctrs:InterpExt. Qed.
Infix "<?" := Compare_dec.lt_dec (at level 60).
Equations InterpUnivN n (i : nat) : Tm n -> (Tm n -> Prop) -> Prop by wf i lt :=
InterpUnivN n i := @InterpExt n i
(fun n j A =>
match j <? i with
| left _ => exists PA, InterpUnivN n j A PA
| right _ => False
end).
Arguments InterpUnivN {n}.
Lemma InterpExt_lt_impl {n : nat} i I I' A (PA : Tm n -> Prop) :
(forall j, j < i -> I n j = I' n j) ->
A i ;; I PA ->
A i ;; I' PA.
Proof.
move => hI h.
elim : A PA /h.
- hauto lq:on rew:off ctrs:InterpExt.
- hauto q:on ctrs:InterpExt.
- hauto lq:on ctrs:InterpExt.
Qed.
Lemma InterpExt_lt_eq {n : nat} i I I' A (PA : Tm n -> Prop) :
(forall j, j < i -> I n j = I' n j) ->
A i ;; I PA =
A i ;; I' PA.
Proof.
move => hI. apply propositional_extensionality.
have : forall j, j < i -> I' n j = I n j by sfirstorder.
firstorder using InterpExt_lt_impl.
Qed.
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
Lemma InterpUnivN_nolt n i :
@InterpUnivN n i = @InterpExt n i (fun n j (A : Tm n) => exists PA, A j PA).
Proof.
simp InterpUnivN.
extensionality A. extensionality PA.
set I0 := (fun _ => _).
set I1 := (fun _ => _).
apply InterpExt_lt_eq.
hauto q:on.
Qed.
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n):
RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed.
Lemma InterpExt_Fun_inv n i I (A : Tm n) B P
(h : Pi A B i ;; I P) :
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
A i ;; I PA /\
(forall a, PA a -> exists PB, PF a PB) /\
(forall a PB, PF a PB -> subst_Tm (scons a VarTm) B i ;; I PB) /\
P = ProdSpace PA PF.
Proof.
move E : (Pi A B) h => T h.
move : A B E.
elim : T P / h => //.
- hauto l:on.
- move => A A0 PA hA hA0 hPi A1 B ?. subst.
elim /RPar.inv : hA => //= _ A2 A3 B0 B1 hA1 hB0 [*]. subst.
hauto lq:on ctrs:InterpExt use:RPar_substone.
Qed.
Lemma InterpExt_Fun_nopf n i I (A : Tm n) B PA :
A i ;; I PA ->
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i ;; I PB) ->
Pi A B i ;; I (ProdSpace PA (fun a PB => subst_Tm (scons a VarTm) B i ;; I PB)).
Proof.
move => h0 h1. apply InterpExt_Fun =>//.
Qed.
Lemma InterpUnivN_Fun_nopf n i (A : Tm n) B PA :
A i PA ->
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i PB) ->
Pi A B i (ProdSpace PA (fun a PB => subst_Tm (scons a VarTm) B i PB)).
Proof.
hauto l:on use:InterpExt_Fun_nopf rew:db:InterpUniv.
Qed.
Lemma InterpExt_cumulative n i j I (A : Tm n) PA :
i < j ->
A i ;; I PA ->
A j ;; I PA.
Proof.
move => h h0.
elim : A PA /h0;
hauto l:on ctrs:InterpExt use:PeanoNat.Nat.lt_trans.
Qed.
Lemma InterpUnivN_cumulative n i (A : Tm n) PA :
A i PA -> forall j, i < j ->
A j PA.
Proof.
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
Qed.
Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) :
RPar.R A B ->
B i ;; I P.
Proof.
move : B.
elim : A P / h; auto.
- move => A B PA PF hPA ihPA hPB hPB' ihPB T hT.
elim /RPar.inv : hT => //.
move => hPar A0 A1 B0 B1 h0 h1 [? ?] ?; subst.
apply InterpExt_Fun; auto.
move => a PB hPB0.
apply : ihPB; eauto.
sfirstorder use:RPar.cong, RPar.refl.
- hauto lq:on inv:RPar.R ctrs:InterpExt.
- move => A B P h0 h1 ih1 C hC.
have [D [h2 h3]] := RPar_diamond _ _ _ _ h0 hC.
hauto lq:on ctrs:InterpExt.
Qed.
Lemma InterpUnivN_preservation n i (A : Tm n) B P (h : A i P) :
RPar.R A B ->
B i P.
Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed.
Lemma InterpExt_back_preservation_star n i I (A : Tm n) B P (h : B i ;; I P) :
rtc RPar.R A B ->
A i ;; I P.
Proof. induction 1; hauto l:on ctrs:InterpExt. Qed.
Lemma InterpExt_preservation_star n i I (A : Tm n) B P (h : A i ;; I P) :
rtc RPar.R A B ->
B i ;; I P.
Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed.
Lemma InterpUnivN_preservation_star n i (A : Tm n) B P (h : A i P) :
rtc RPar.R A B ->
B i P.
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed.
Lemma InterpUnivN_back_preservation_star n i (A : Tm n) B P (h : B i P) :
rtc RPar.R A B ->
A i P.
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed.