Add outermost expansion and some related lemmas
This commit is contained in:
parent
a38a6eb8e8
commit
86dab74384
2 changed files with 46 additions and 0 deletions
|
@ -11,3 +11,10 @@ Abs a0 ----> (Abs a3) >>* a2
|
|||
| |
|
||||
| |
|
||||
Abs a1 ----> (Abs a4) >>*
|
||||
|
||||
|
||||
a0 >> a1
|
||||
| |
|
||||
| |
|
||||
v v
|
||||
b0 >> b1
|
||||
|
|
|
@ -242,6 +242,45 @@ Module EPar.
|
|||
End EPar.
|
||||
|
||||
|
||||
Module OExp.
|
||||
Inductive R {n} : Tm n -> Tm n -> Prop :=
|
||||
(****************** Eta ***********************)
|
||||
| AppEta a :
|
||||
R a (Abs (App (ren_Tm shift a) (VarTm var_zero)))
|
||||
| PairEta a :
|
||||
R a (Pair (Proj PL a) (Proj PR a)).
|
||||
|
||||
Lemma merge n (t a b : Tm n) :
|
||||
rtc R a b ->
|
||||
EPar.R t a ->
|
||||
EPar.R t b.
|
||||
Proof.
|
||||
move => h. move : t. elim : a b /h.
|
||||
- eauto using EPar.refl.
|
||||
- hauto q:on ctrs:EPar.R inv:R.
|
||||
Qed.
|
||||
|
||||
Lemma commutativity n (a b c : Tm n) :
|
||||
EPar.R a b -> R a c -> exists d, R b d /\ EPar.R c d.
|
||||
Proof.
|
||||
move => h.
|
||||
inversion 1; subst.
|
||||
- hauto q:on ctrs:EPar.R, R use:EPar.renaming, EPar.refl.
|
||||
- hauto lq:on ctrs:EPar.R, R.
|
||||
Qed.
|
||||
|
||||
Lemma commutativity0 n (a b c : Tm n) :
|
||||
EPar.R a b -> rtc R a c -> exists d, rtc R b d /\ EPar.R c d.
|
||||
Proof.
|
||||
move => + h. move : b.
|
||||
elim : a c / h.
|
||||
- sfirstorder.
|
||||
- hauto lq:on rew:off ctrs:rtc use:commutativity.
|
||||
Qed.
|
||||
|
||||
End OExp.
|
||||
|
||||
|
||||
Local Ltac com_helper :=
|
||||
split; [hauto lq:on ctrs:RPar.R use: RPar.refl, RPar.renaming
|
||||
|hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming].
|
||||
|
|
Loading…
Add table
Reference in a new issue