Prove the pi case for interpext_join
This commit is contained in:
parent
d12de328b6
commit
86b8043215
2 changed files with 91 additions and 46 deletions
|
@ -1617,26 +1617,6 @@ Proof.
|
||||||
hauto lq:on use:rtc_union.
|
hauto lq:on use:rtc_union.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Definition join {n} (a b : Tm n) :=
|
|
||||||
exists c, rtc Par.R a c /\ rtc Par.R b c.
|
|
||||||
|
|
||||||
Lemma join_transitive n (a b c : Tm n) :
|
|
||||||
join a b -> join b c -> join a c.
|
|
||||||
Proof.
|
|
||||||
rewrite /join.
|
|
||||||
move => [ab [h0 h1]] [bc [h2 h3]].
|
|
||||||
move : Par_confluent h1 h2; repeat move/[apply].
|
|
||||||
move => [abc [h4 h5]].
|
|
||||||
eauto using relations.rtc_transitive.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Lemma join_symmetric n (a b : Tm n) :
|
|
||||||
join a b -> join b a.
|
|
||||||
Proof. sfirstorder unfold:join. Qed.
|
|
||||||
|
|
||||||
Lemma join_refl n (a : Tm n) : join a a.
|
|
||||||
Proof. hauto lq:on ctrs:rtc unfold:join. Qed.
|
|
||||||
|
|
||||||
Lemma pars_univ_inv n i (c : Tm n) :
|
Lemma pars_univ_inv n i (c : Tm n) :
|
||||||
rtc Par.R (Univ i) c ->
|
rtc Par.R (Univ i) c ->
|
||||||
extract c = Univ i.
|
extract c = Univ i.
|
||||||
|
@ -1677,6 +1657,26 @@ Proof.
|
||||||
exists A2, B2. hauto l:on.
|
exists A2, B2. hauto l:on.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Definition join {n} (a b : Tm n) :=
|
||||||
|
exists c, rtc Par.R a c /\ rtc Par.R b c.
|
||||||
|
|
||||||
|
Lemma join_transitive n (a b c : Tm n) :
|
||||||
|
join a b -> join b c -> join a c.
|
||||||
|
Proof.
|
||||||
|
rewrite /join.
|
||||||
|
move => [ab [h0 h1]] [bc [h2 h3]].
|
||||||
|
move : Par_confluent h1 h2; repeat move/[apply].
|
||||||
|
move => [abc [h4 h5]].
|
||||||
|
eauto using relations.rtc_transitive.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma join_symmetric n (a b : Tm n) :
|
||||||
|
join a b -> join b a.
|
||||||
|
Proof. sfirstorder unfold:join. Qed.
|
||||||
|
|
||||||
|
Lemma join_refl n (a : Tm n) : join a a.
|
||||||
|
Proof. hauto lq:on ctrs:rtc unfold:join. Qed.
|
||||||
|
|
||||||
Lemma join_univ_inj n i j (C : Tm n) :
|
Lemma join_univ_inj n i j (C : Tm n) :
|
||||||
join (Univ i : Tm n) (Univ j) -> i = j.
|
join (Univ i : Tm n) (Univ j) -> i = j.
|
||||||
Proof.
|
Proof.
|
||||||
|
@ -1701,3 +1701,9 @@ Proof.
|
||||||
move /pars_pi_inv : h0.
|
move /pars_pi_inv : h0.
|
||||||
hauto l:on.
|
hauto l:on.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
Lemma join_substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
|
||||||
|
join a b ->
|
||||||
|
join (subst_Tm ρ a) (subst_Tm ρ b).
|
||||||
|
Proof. hauto lq:on unfold:join use:Pars.substing. Qed.
|
||||||
|
|
|
@ -4,7 +4,7 @@ From Hammer Require Import Tactics.
|
||||||
From Equations Require Import Equations.
|
From Equations Require Import Equations.
|
||||||
Require Import ssreflect ssrbool.
|
Require Import ssreflect ssrbool.
|
||||||
Require Import Logic.PropExtensionality (propositional_extensionality).
|
Require Import Logic.PropExtensionality (propositional_extensionality).
|
||||||
From stdpp Require Import relations (rtc(..)).
|
From stdpp Require Import relations (rtc(..), rtc_subrel).
|
||||||
Definition ProdSpace {n} (PA : Tm n -> Prop)
|
Definition ProdSpace {n} (PA : Tm n -> Prop)
|
||||||
(PF : Tm n -> (Tm n -> Prop) -> Prop) b : Prop :=
|
(PF : Tm n -> (Tm n -> Prop) -> Prop) b : Prop :=
|
||||||
forall a PB, PA a -> PF a PB -> PB (App b a).
|
forall a PB, PA a -> PF a PB -> PB (App b a).
|
||||||
|
@ -91,37 +91,37 @@ Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n):
|
||||||
RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
|
RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
|
||||||
Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed.
|
Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed.
|
||||||
|
|
||||||
Lemma InterpExt_Fun_inv n i I (A : Tm n) B P
|
Lemma InterpExt_Bind_inv n p i I (A : Tm n) B P
|
||||||
(h : ⟦ TBind TPi A B ⟧ i ;; I ↘ P) :
|
(h : ⟦ TBind p A B ⟧ i ;; I ↘ P) :
|
||||||
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
|
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
|
||||||
⟦ A ⟧ i ;; I ↘ PA /\
|
⟦ A ⟧ i ;; I ↘ PA /\
|
||||||
(forall a, PA a -> exists PB, PF a PB) /\
|
(forall a, PA a -> exists PB, PF a PB) /\
|
||||||
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\
|
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\
|
||||||
P = ProdSpace PA PF.
|
P = BindSpace p PA PF.
|
||||||
Proof.
|
Proof.
|
||||||
move E : (TBind TPi A B) h => T h.
|
move E : (TBind p A B) h => T h.
|
||||||
move : A B E.
|
move : A B E.
|
||||||
elim : T P / h => //.
|
elim : T P / h => //.
|
||||||
- hauto l:on.
|
- hauto l:on.
|
||||||
- move => A A0 PA hA hA0 hPi A1 B ?. subst.
|
- move => A A0 PA hA hA0 hPi A1 B ?. subst.
|
||||||
elim /RPar.inv : hA => //= _ p A2 A3 B0 B1 hA1 hB0 [*]. subst.
|
elim /RPar.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst.
|
||||||
hauto lq:on ctrs:InterpExt use:RPar_substone.
|
hauto lq:on ctrs:InterpExt use:RPar_substone.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpExt_Fun_nopf n i I (A : Tm n) B PA :
|
Lemma InterpExt_Bind_nopf n p i I (A : Tm n) B PA :
|
||||||
⟦ A ⟧ i ;; I ↘ PA ->
|
⟦ A ⟧ i ;; I ↘ PA ->
|
||||||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) ->
|
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) ->
|
||||||
⟦ TBind TPi A B ⟧ i ;; I ↘ (ProdSpace PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB)).
|
⟦ TBind p A B ⟧ i ;; I ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB)).
|
||||||
Proof.
|
Proof.
|
||||||
move => h0 h1. apply InterpExt_Fun =>//.
|
move => h0 h1. apply InterpExt_Bind =>//.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpUnivN_Fun_nopf n i (A : Tm n) B PA :
|
Lemma InterpUnivN_Fun_nopf n p i (A : Tm n) B PA :
|
||||||
⟦ A ⟧ i ↘ PA ->
|
⟦ A ⟧ i ↘ PA ->
|
||||||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) ->
|
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) ->
|
||||||
⟦ TBind TPi A B ⟧ i ↘ (ProdSpace PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB)).
|
⟦ TBind p A B ⟧ i ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB)).
|
||||||
Proof.
|
Proof.
|
||||||
hauto l:on use:InterpExt_Fun_nopf rew:db:InterpUniv.
|
hauto l:on use:InterpExt_Bind_nopf rew:db:InterpUniv.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma InterpExt_cumulative n i j I (A : Tm n) PA :
|
Lemma InterpExt_cumulative n i j I (A : Tm n) PA :
|
||||||
|
@ -147,11 +147,10 @@ Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) :
|
||||||
Proof.
|
Proof.
|
||||||
move : B.
|
move : B.
|
||||||
elim : A P / h; auto.
|
elim : A P / h; auto.
|
||||||
- move => A B PA PF hPA ihPA hPB hPB' ihPB T hT.
|
- move => p A B PA PF hPA ihPA hPB hPB' ihPB T hT.
|
||||||
elim /RPar.inv : hT => //.
|
elim /RPar.inv : hT => //.
|
||||||
move => hPar p A0 A1 B0 B1 h0 h1 [? ?] ? ?; subst.
|
move => hPar p0 A0 A1 B0 B1 h0 h1 [? ?] ? ?; subst.
|
||||||
apply InterpExt_Fun; auto.
|
apply InterpExt_Bind; auto => a PB hPB0.
|
||||||
move => a PB hPB0.
|
|
||||||
apply : ihPB; eauto.
|
apply : ihPB; eauto.
|
||||||
sfirstorder use:RPar.cong, RPar.refl.
|
sfirstorder use:RPar.cong, RPar.refl.
|
||||||
- hauto lq:on inv:RPar.R ctrs:InterpExt.
|
- hauto lq:on inv:RPar.R ctrs:InterpExt.
|
||||||
|
@ -190,8 +189,8 @@ Lemma InterpExtInv n i I (A : Tm n) PA :
|
||||||
exists B, hfb B /\ rtc RPar.R A B /\ ⟦ B ⟧ i ;; I ↘ PA.
|
exists B, hfb B /\ rtc RPar.R A B /\ ⟦ B ⟧ i ;; I ↘ PA.
|
||||||
Proof.
|
Proof.
|
||||||
move => h. elim : A PA /h.
|
move => h. elim : A PA /h.
|
||||||
- move => A B PA PF hPA _ hPF hPF0 _.
|
- move => p A B PA PF hPA _ hPF hPF0 _.
|
||||||
exists (TBind TPi A B). repeat split => //=.
|
exists (TBind p A B). repeat split => //=.
|
||||||
apply rtc_refl.
|
apply rtc_refl.
|
||||||
hauto l:on ctrs:InterpExt.
|
hauto l:on ctrs:InterpExt.
|
||||||
- move => j ?. exists (Univ j).
|
- move => j ?. exists (Univ j).
|
||||||
|
@ -199,6 +198,37 @@ Proof.
|
||||||
- hauto lq:on ctrs:rtc.
|
- hauto lq:on ctrs:rtc.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Lemma RPars_Pars {n} (A B : Tm n) :
|
||||||
|
rtc RPar.R A B ->
|
||||||
|
rtc Par.R A B.
|
||||||
|
Proof. hauto lq:on use:RPar_Par, rtc_subrel. Qed.
|
||||||
|
|
||||||
|
Lemma RPars_join {n} (A B : Tm n) :
|
||||||
|
rtc RPar.R A B -> join A B.
|
||||||
|
Proof. hauto lq:on ctrs:rtc use:RPars_Pars. Qed.
|
||||||
|
|
||||||
|
Lemma bindspace_iff {n} p (PA : Tm n -> Prop) PF PF0 b :
|
||||||
|
(forall (a : Tm n) (PB PB0 : Tm n -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
|
||||||
|
(forall a, PA a -> exists PB, PF a PB) ->
|
||||||
|
(forall a, PA a -> exists PB0, PF0 a PB0) ->
|
||||||
|
(BindSpace p PA PF b <-> BindSpace p PA PF0 b).
|
||||||
|
Proof.
|
||||||
|
rewrite /BindSpace => h hPF hPF0.
|
||||||
|
case : p => /=.
|
||||||
|
- rewrite /ProdSpace.
|
||||||
|
split.
|
||||||
|
move => h1 a PB ha hPF'.
|
||||||
|
specialize hPF with (1 := ha).
|
||||||
|
specialize hPF0 with (1 := ha).
|
||||||
|
sblast.
|
||||||
|
move => ? a PB ha.
|
||||||
|
specialize hPF with (1 := ha).
|
||||||
|
specialize hPF0 with (1 := ha).
|
||||||
|
sblast.
|
||||||
|
- rewrite /SumSpace.
|
||||||
|
hauto lq:on rew:off.
|
||||||
|
Qed.
|
||||||
|
|
||||||
Lemma InterpExt_Join n i I (A B : Tm n) PA PB :
|
Lemma InterpExt_Join n i I (A B : Tm n) PA PB :
|
||||||
⟦ A ⟧ i ;; I ↘ PA ->
|
⟦ A ⟧ i ;; I ↘ PA ->
|
||||||
⟦ B ⟧ i ;; I ↘ PB ->
|
⟦ B ⟧ i ;; I ↘ PB ->
|
||||||
|
@ -206,22 +236,31 @@ Lemma InterpExt_Join n i I (A B : Tm n) PA PB :
|
||||||
PA = PB.
|
PA = PB.
|
||||||
Proof.
|
Proof.
|
||||||
move => h. move : B PB. elim : A PA /h.
|
move => h. move : B PB. elim : A PA /h.
|
||||||
- move => A B PA PF hPA ihPA hTot hRes ihPF U PU /InterpExtInv.
|
- move => p A B PA PF hPA ihPA hTot hRes ihPF U PU /InterpExtInv.
|
||||||
move => [B0 []].
|
move => [B0 []].
|
||||||
case : B0 => //=.
|
case : B0 => //=.
|
||||||
+ move => p A0 B0 _ [hr hPi].
|
+ move => p0 A0 B0 _ [hr hPi].
|
||||||
move /InterpExt_Fun_inv : hPi.
|
move /InterpExt_Bind_inv : hPi.
|
||||||
move => [PA0][PF0][hPA0][hTot0][hRes0]?. subst.
|
move => [PA0][PF0][hPA0][hTot0][hRes0]?. subst.
|
||||||
move => hjoin.
|
move => hjoin.
|
||||||
have ? : join A A0 by admit.
|
have{}hr : join U (TBind p0 A0 B0) by auto using RPars_join.
|
||||||
have ? : join B B0 by admit.
|
have hj : join (TBind p A B) (TBind p0 A0 B0) by eauto using join_transitive.
|
||||||
|
have {hj} : p0 = p /\ join A A0 /\ join B B0 by hauto l:on use:join_pi_inj.
|
||||||
|
move => [? [h0 h1]]. subst.
|
||||||
have ? : PA0 = PA by hauto l:on. subst.
|
have ? : PA0 = PA by hauto l:on. subst.
|
||||||
rewrite /ProdSpace.
|
rewrite /ProdSpace.
|
||||||
extensionality b.
|
extensionality b.
|
||||||
apply propositional_extensionality.
|
apply propositional_extensionality.
|
||||||
admit.
|
apply bindspace_iff; eauto.
|
||||||
(* Contradiction *)
|
move => a PB PB0 hPB hPB0.
|
||||||
+ admit.
|
apply : ihPF; eauto.
|
||||||
|
by apply join_substing.
|
||||||
|
+ move => j _.
|
||||||
|
move => [h0 h1] h.
|
||||||
|
have ? : join U (Univ j) by eauto using RPars_join.
|
||||||
|
have : join (TBind p A B) (Univ j) by eauto using join_transitive.
|
||||||
|
move => ?. exfalso.
|
||||||
|
eauto using join_univ_pi_contra.
|
||||||
- admit.
|
- admit.
|
||||||
- admit.
|
- admit.
|
||||||
Admitted.
|
Admitted.
|
||||||
|
|
Loading…
Add table
Reference in a new issue