Generalize Pi to TBind so we have both sigma and pi

This commit is contained in:
Yiyun Liu 2024-12-27 12:12:19 -05:00
parent 368c83dd8e
commit 7f4c31b14e
3 changed files with 77 additions and 54 deletions

View file

@ -68,10 +68,10 @@ Module Par.
| ProjCong p a0 a1 :
R a0 a1 ->
R (Proj p a0) (Proj p a1)
| PiCong A0 A1 B0 B1:
| BindCong p A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
R (Pi A0 B0) (Pi A1 B1)
R (TBind p A0 B0) (TBind p A1 B1)
(* Bot is useful for making the prov function computable *)
| BotCong :
R Bot Bot
@ -209,11 +209,11 @@ Module Par.
move : iha => [b0 [? ?]]. subst.
eexists. split. by apply ProjCong; eauto.
by asimpl.
- move => n A0 A1 B0 B1 ha iha hB ihB m ξ []//= t t0 [*]. subst.
- move => n p A0 A1 B0 B1 ha iha hB ihB m ξ []//= ? t t0 [*]. subst.
spec_refl.
move : iha => [b0 [? ?]].
move : ihB => [c0 [? ?]]. subst.
eexists. split. by apply PiCong; eauto.
eexists. split. by apply BindCong; eauto.
by asimpl.
- move => n n0 ξ []//=. hauto l:on.
- move => n i n0 ξ []//=. hauto l:on.
@ -286,7 +286,7 @@ Module RPar.
| ProjCong p a0 a1 :
R a0 a1 ->
R (Proj p a0) (Proj p a1)
| PiCong A0 A1 B0 B1:
| BindCong A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
R (Pi A0 B0) (Pi A1 B1)
@ -404,7 +404,7 @@ Module EPar.
| ProjCong p a0 a1 :
R a0 a1 ->
R (Proj p a0) (Proj p a1)
| PiCong A0 A1 B0 B1:
| BindCong A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
R (Pi A0 B0) (Pi A1 B1)
@ -533,7 +533,7 @@ Module RPars.
rtc RPar.R (App a0 b0) (App a1 b1).
Proof. solve_s. Qed.
Lemma PiCong n (a0 a1 : Tm n) b0 b1 :
Lemma BindCong n (a0 a1 : Tm n) b0 b1 :
rtc RPar.R a0 a1 ->
rtc RPar.R b0 b1 ->
rtc RPar.R (Pi a0 b0) (Pi a1 b1).
@ -754,7 +754,7 @@ Proof.
exists d. split => //.
hauto lq:on use:RPars.ProjCong, relations.rtc_transitive.
+ hauto lq:on ctrs:EPar.R use:RPars.ProjCong.
- hauto lq:on inv:RPar.R ctrs:EPar.R, rtc use:RPars.PiCong.
- hauto lq:on inv:RPar.R ctrs:EPar.R, rtc use:RPars.BindCong.
- hauto l:on ctrs:EPar.R inv:RPar.R.
- hauto l:on ctrs:EPar.R inv:RPar.R.
Qed.
@ -927,7 +927,7 @@ Proof.
- move => n a0 a1 b0 b1 ha iha hb ihb c.
move /Pi_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}.
have : EPar.R (Pi a2 b2)(Pi a3 b3)
by hauto l:on use:EPar.PiCong.
by hauto l:on use:EPar.BindCong.
move : OExp.commutativity0 h2; repeat move/[apply].
move => [d h].
exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
@ -1375,24 +1375,24 @@ Module ERPar.
- sfirstorder use:EPar.AppCong, @rtc_once.
Qed.
Lemma PiCong n (a0 a1 : Tm n) b0 b1:
Lemma BindCong n (a0 a1 : Tm n) b0 b1:
R a0 a1 ->
R b0 b1 ->
rtc R (Pi a0 b0) (Pi a1 b1).
Proof.
move => [] + [].
- sfirstorder use:RPar.PiCong, @rtc_once.
- sfirstorder use:RPar.BindCong, @rtc_once.
- move => h0 h1.
apply : rtc_l.
left. apply RPar.PiCong; eauto; apply RPar.refl.
left. apply RPar.BindCong; eauto; apply RPar.refl.
apply rtc_once.
hauto l:on use:EPar.PiCong, EPar.refl.
hauto l:on use:EPar.BindCong, EPar.refl.
- move => h0 h1.
apply : rtc_l.
left. apply RPar.PiCong; eauto; apply RPar.refl.
left. apply RPar.BindCong; eauto; apply RPar.refl.
apply rtc_once.
hauto l:on use:EPar.PiCong, EPar.refl.
- sfirstorder use:EPar.PiCong, @rtc_once.
hauto l:on use:EPar.BindCong, EPar.refl.
- sfirstorder use:EPar.BindCong, @rtc_once.
Qed.
Lemma PairCong n (a0 a1 b0 b1 : Tm n) :
@ -1423,7 +1423,7 @@ Module ERPar.
End ERPar.
Hint Resolve ERPar.AppCong ERPar.refl ERPar.AbsCong ERPar.PairCong ERPar.ProjCong ERPar.PiCong : erpar.
Hint Resolve ERPar.AppCong ERPar.refl ERPar.AbsCong ERPar.PairCong ERPar.ProjCong ERPar.BindCong : erpar.
Module ERPars.
#[local]Ltac solve_s_rec :=
@ -1454,7 +1454,7 @@ Module ERPars.
rtc ERPar.R (Proj p a0) (Proj p a1).
Proof. solve_s. Qed.
Lemma PiCong n (a0 a1 : Tm n) b0 b1:
Lemma BindCong n (a0 a1 : Tm n) b0 b1:
rtc ERPar.R a0 a1 ->
rtc ERPar.R b0 b1 ->
rtc ERPar.R (Pi a0 b0) (Pi a1 b1).
@ -1512,7 +1512,7 @@ Proof.
- sfirstorder use:ERPars.AppCong.
- sfirstorder use:ERPars.PairCong.
- sfirstorder use:ERPars.ProjCong.
- sfirstorder use:ERPars.PiCong.
- sfirstorder use:ERPars.BindCong.
- sfirstorder.
- sfirstorder.
Qed.