diff --git a/theories/fp_red.v b/theories/fp_red.v index 2f75b8f..98c2972 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -311,7 +311,6 @@ Proof. apply rtc_once. apply : RPar.Proj2Abs; eauto using RPar.refl. Qed. - Lemma commutativity n (a b0 b1 : Tm n) : EPar.R a b0 -> RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c. Proof. @@ -322,23 +321,26 @@ Proof. move => [c [ih0 ih1]]. exists (Abs (App (ren_Tm shift c) (VarTm var_zero))). split. - + sfirstorder use:RPars_AbsCong, RPars_AppCong, RPars_renaming. + + sfirstorder use:RPars.AbsCong, RPars.AppCong, RPars.renaming. + hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming. - move => n a b0 hb0 ihb0 b1 /[dup] hb1 {}/ihb0. move => [c [ih0 ih1]]. exists (Pair (Proj1 c) (Proj2 c)). split. - + apply RPars_PairCong; admit. + + apply RPars.PairCong. + by apply RPars.Proj1Cong. + by apply RPars.Proj2Cong. + hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming. - hauto l:on ctrs:rtc inv:RPar.R. - move => n a0 a1 h ih b1. elim /RPar.inv => //= _. move => a2 a3 ? [*]. subst. - hauto lq:on ctrs:rtc, RPar.R, EPar.R use:RPars_AbsCong. + hauto lq:on ctrs:rtc, RPar.R, EPar.R use:RPars.AbsCong. - move => n a0 a1 b0 b1 ha iha hb ihb b2. elim /RPar.inv => //= _. + move => a2 a3 b3 b4 h0 h1 [*]. subst. have {}/iha : RPar.R (Abs a2) (Abs a3) by hauto lq:on ctrs:RPar.R. - move => [c [ih0 ih1]]. + move => [c [ih0 /Abs_EPar [ih1 ih2]]]. + elim /EPar.inv : ha => //= _. * move => a0 a4 h *. subst.