Prove the commutativity of cred and rred

This commit is contained in:
Yiyun Liu 2025-01-12 19:46:32 -05:00
parent 3732757abe
commit 764606cf2d

View file

@ -428,6 +428,34 @@ Module CRed.
Lemma refl n (a : Tm n) : R a a. Lemma refl n (a : Tm n) : R a a.
Proof. elim : n / a; hauto lq:on ctrs:R. Qed. Proof. elim : n / a; hauto lq:on ctrs:R. Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h; hauto lq:on ctrs:R.
Qed.
Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
(forall i, R (ρ0 i) (ρ1 i)) ->
R a b -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b).
Proof.
move => + h. move : m ρ0 ρ1. elim : a b /h; hauto l:on ctrs:R inv:option use:renaming.
Qed.
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
R a b ->
R (subst_Tm ρ a) (subst_Tm ρ b).
Proof. hauto l:on use:morphing, refl. Qed.
Lemma cong n (a b : Tm (S n)) c d :
R a b ->
R c d ->
R (subst_Tm (scons c VarTm) a) (subst_Tm (scons d VarTm) b).
Proof.
move => h0 h1. apply morphing => //=.
qauto l:on ctrs:R inv:option.
Qed.
Function tstar {n} (a : Tm n) := Function tstar {n} (a : Tm n) :=
match a with match a with
| VarTm i => a | VarTm i => a
@ -908,40 +936,139 @@ Module RRed.
End RRed. End RRed.
Module RReds.
#[local]Ltac solve_s_rec :=
move => *; eapply rtc_l; eauto;
hauto lq:on ctrs:RRed.R.
#[local]Ltac solve_s :=
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
Lemma AbsCong n (a b : Tm (S n)) :
rtc RRed.R a b ->
rtc RRed.R (Abs a) (Abs b).
Proof. solve_s. Qed.
Lemma AppCong n (a0 a1 b0 b1 : Tm n) :
rtc RRed.R a0 a1 ->
rtc RRed.R b0 b1 ->
rtc RRed.R (App a0 b0) (App a1 b1).
Proof. solve_s. Qed.
Lemma BindCong n p (a0 a1 : Tm n) b0 b1 :
rtc RRed.R a0 a1 ->
rtc RRed.R b0 b1 ->
rtc RRed.R (TBind p a0 b0) (TBind p a1 b1).
Proof. solve_s. Qed.
Lemma PairCong n (a0 a1 b0 b1 : Tm n) :
rtc RRed.R a0 a1 ->
rtc RRed.R b0 b1 ->
rtc RRed.R (Pair a0 b0) (Pair a1 b1).
Proof. solve_s. Qed.
Lemma ProjCong n p (a0 a1 : Tm n) :
rtc RRed.R a0 a1 ->
rtc RRed.R (Proj p a0) (Proj p a1).
Proof. solve_s. Qed.
End RReds.
Module CRedRRed. Module CRedRRed.
Lemma commutativity0 n (a b0 b1 : Tm n) : Lemma commutativity0 n (a b0 b1 : Tm n) :
CRed.R a b0 -> RRed.R a b1 -> exists c, rtc RRed.R b0 c /\ clos_refl CRed.R b1 c. CRed.R a b0 -> RRed.R a b1 -> exists c, rtc RRed.R b0 c /\ CRed.R b1 c.
Proof. Proof.
move => h. move : b1. elim : n a b0/h => n. move => h. move : b1. elim : n a b0/h => n.
- hauto lq:on inv:RRed.R. - hauto lq:on inv:RRed.R.
- hauto q:on inv:RRed.R. - hauto q:on inv:RRed.R.
- hauto q:on inv:RRed.R.
- move => a0 a1 ha iha b. - move => a0 a1 ha iha b.
elim /RRed.inv => //=_ a2 a3 h [*]. subst. elim /RRed.inv => //=_ a2 a3 h [*]. subst.
move /iha : h => [a [h0 h1]]. move /iha : h => [a [h0 h1]].
exists (Abs a). split. admit. hauto lq:on ctrs:clos_refl, CRed.R inv:clos_refl. exists (Abs a). split. auto using RReds.AbsCong. hauto lq:on ctrs:CRed.R.
- move => a0 a1 b ha iha b1. - move => a0 a1 b0 b1 ha iha hb ihb u.
elim /RRed.inv => //=_. elim /RRed.inv => //=_.
+ move => a2 b0 [*]. subst. + move => a2 b2 [*]. subst.
elim /CRed.inv : ha => //= _ a0 a3 ha [*]. subst. elim /CRed.inv : ha => //= _ a0 a3 ha [*]. subst.
exists (subst_Tm (scons b VarTm) a3). move {iha ihb}.
exists (subst_Tm (scons b1 VarTm) a3).
split. hauto lq:on ctrs:RRed.R use:@rtc_once. split. hauto lq:on ctrs:RRed.R use:@rtc_once.
apply r_step. hauto lq:on use:CRed.cong.
admit.
+ sauto lq:on. + sauto lq:on.
+ move => a2 a3 b0 ha0 [*]. subst. + move => a2 a3 b2 ha0 [*]. subst.
move /iha : ha0 => [a4 [h0 h1]]. move /iha : ha0 => [a4 [h0 h1]].
exists (App a4 b). exists (App a4 b1).
split. admit. split. hauto lq:on ctrs:rtc use: RReds.AppCong.
sauto lq:on rew:off. sauto lq:on rew:off.
+ sauto lq:on. + move => a2 b2 b3 hb2 [*]. subst.
- move => a b0 b1 ha iha b2. move /ihb : hb2 => [b4 [ih0 ih1]].
exists (App a1 b4).
split.
hauto lq:on ctrs:rtc use:RReds.AppCong.
hauto lq:on ctrs:CRed.R.
- move => a0 a1 b0 b1 ha iha hb ihb u.
elim /RRed.inv => //= _. elim /RRed.inv => //= _.
+ move => a0 b3 [*]. subst. + move => a2 a3 b2 + [*]. subst.
exists (subst_Tm (scons b1 VarTm) a0). move /iha => [a4 [ih0 ih1]].
exists (Pair a4 b1).
split. hauto lq:on ctrs:rtc use:RReds.PairCong.
sauto lq:on.
+ move => a2 b2 b3 + [*]. subst.
move /ihb {ihb}.
move => [b4 [ih0 ih1]].
exists (Pair a1 b4). split. hauto lq:on ctrs:rtc use:RReds.PairCong.
sauto lq:on.
- move => p a0 a1 ha iha u.
elim /RRed.inv => //= _.
+ sauto lq:on rew:off.
+ sauto q:on.
+ move => p0 a2 a3 ha2 [*]. subst.
move /iha : ha2 {iha} => [a4 [ih0 ih1]].
exists (Proj p a4).
split. sfirstorder ctrs:rtc use:RReds.ProjCong.
sauto lq:on.
- move => p A0 A1 B0 B1 hA ihA hB ihB u.
elim /RRed.inv => //=_.
+ move => p0 A2 A3 B h [*]. subst.
apply ihA in h.
move : h => [A [h0 h1]].
exists (TBind p A B1).
split. hauto lq:on use:RReds.BindCong.
sauto lq:on.
+ move => p0 A B2 B3 hB0 [*]. subst.
apply ihB in hB0.
move : hB0 => [B [ih0 ih1]].
exists (TBind p A1 B).
split. hauto ctrs:rtc lq:on use:RReds.BindCong.
sauto lq:on.
- sauto lq:on.
- sauto lq:on.
- sauto lq:on.
- sauto lq:on.
- move => a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc u.
elim /RRed.inv => //= _.
+ move => a2 b2 c [*]. subst.
elim /CRed.inv : ha => //=_.
move => a0 a3 ha [*]. subst.
exists (Abs (If a3 (ren_Tm shift b1) (ren_Tm shift c1))).
split. sauto lq:on. split. sauto lq:on.
apply CRed.AbsCong.
apply CRed.IfCong; eauto using CRed.renaming.
+ move => a2 b2 c d [*]. subst.
move {iha ihb ihc}.
elim /CRed.inv : ha => //=_.
move => a0 a3 b3 b4 h0 h1 [*]. subst.
exists (Pair (If a3 b1 c1) (If b4 b1 c1)).
split. sauto lq:on.
sauto lq:on.
+ move {iha ihb ihc}.
move => a2 b2 c [*]. subst.
elim /CRed.inv : ha => //= _.
move => b2 [*]. subst.
sauto lq:on.
Qed.
End CRedRRed.
(* (***************** Beta rules only ***********************) *) (* (***************** Beta rules only ***********************) *)
(* Module RPar'. *) (* Module RPar'. *)