Finish all except the sigma case

This commit is contained in:
Yiyun Liu 2024-12-30 23:00:31 -05:00
parent 2f68e6c87c
commit 708cac5d53

View file

@ -137,17 +137,17 @@ Proof.
Qed. Qed.
Lemma InterpExt_cumulative i j I (A : Tm 0) PA : Lemma InterpExt_cumulative i j I (A : Tm 0) PA :
i < j -> i <= j ->
A i ;; I PA -> A i ;; I PA ->
A j ;; I PA. A j ;; I PA.
Proof. Proof.
move => h h0. move => h h0.
elim : A PA /h0; elim : A PA /h0;
hauto l:on ctrs:InterpExt use:PeanoNat.Nat.lt_trans. hauto l:on ctrs:InterpExt solve+:(by lia).
Qed. Qed.
Lemma InterpUnivN_cumulative i (A : Tm 0) PA : Lemma InterpUnivN_cumulative i (A : Tm 0) PA :
A i PA -> forall j, i < j -> A i PA -> forall j, i <= j ->
A j PA. A j PA.
Proof. Proof.
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative. hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
@ -289,6 +289,13 @@ Proof.
eauto using join_transitive. eauto using join_transitive.
Qed. Qed.
Lemma InterpUniv_Join i (A B : Tm 0) PA PB :
A i PA ->
B i PB ->
join A B ->
PA = PB.
Proof. hauto l:on use:InterpExt_Join rew:db:InterpUniv. Qed.
Lemma InterpUniv_Bind_inv p i (A : Tm 0) B P Lemma InterpUniv_Bind_inv p i (A : Tm 0) B P
(h : TBind p A B i P) : (h : TBind p A B i P) :
exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop), exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop),
@ -315,13 +322,25 @@ Lemma InterpUniv_Functional i (A : Tm 0) PA PB :
PA = PB. PA = PB.
Proof. hauto use:InterpExt_Functional rew:db:InterpUniv. Qed. Proof. hauto use:InterpExt_Functional rew:db:InterpUniv. Qed.
Lemma InterpUniv_Join' i j (A B : Tm 0) PA PB :
A i PA ->
B j PB ->
join A B ->
PA = PB.
Proof.
have [? ?] : i <= max i j /\ j <= max i j by lia.
move => hPA hPB.
have : A (max i j) PA by eauto using InterpUnivN_cumulative.
have : B (max i j) PB by eauto using InterpUnivN_cumulative.
eauto using InterpUniv_Join.
Qed.
Lemma InterpUniv_Functional' i j A PA PB : Lemma InterpUniv_Functional' i j A PA PB :
A i PA -> A i PA ->
A j PB -> A j PB ->
PA = PB. PA = PB.
Proof. Proof.
have : i = j \/ i < j \/ j < i by lia. hauto l:on use:InterpUniv_Join', join_refl.
qauto l:on use:InterpUnivN_cumulative, InterpUniv_Functional.
Qed. Qed.
Lemma InterpExt_Bind_inv_nopf i I p A B P (h : TBind p A B i ;; I P) : Lemma InterpExt_Bind_inv_nopf i I p A B P (h : TBind p A B i ;; I P) :
@ -493,3 +512,82 @@ Proof.
eauto using weakening_Sem. eauto using weakening_Sem.
- hauto q:on use:weakening_Sem. - hauto q:on use:weakening_Sem.
Qed. Qed.
(* Semantic typing rules *)
Lemma ST_Var n Γ (i : fin n) :
Γ ->
Γ VarTm i Γ i.
Proof.
move /(_ i) => [j /SemWt_Univ h].
rewrite /SemWt => ρ /[dup] hρ {}/h [S hS].
exists j, S.
asimpl. firstorder.
Qed.
Lemma ST_Bind n Γ i j p (A : Tm n) (B : Tm (S n)) :
Γ A Univ i ->
funcomp (ren_Tm shift) (scons A Γ) B Univ j ->
Γ TBind p A B Univ (max i j).
Proof.
move => /SemWt_Univ h0 /SemWt_Univ h1.
apply SemWt_Univ => ρ hρ.
move /h0 : (hρ){h0} => [S hS].
eexists => /=.
have ? : i <= Nat.max i j by lia.
apply InterpUnivN_Fun_nopf.
- eauto using InterpUnivN_cumulative.
- move => *. asimpl. hauto l:on use:InterpUnivN_cumulative, ρ_ok_cons.
Qed.
Lemma ST_Conv n Γ (a : Tm n) A B i :
Γ a A ->
Γ B Univ i ->
join A B ->
Γ a B.
Proof.
move => ha /SemWt_Univ h h0.
move => ρ hρ.
have {}h0 : join (subst_Tm ρ A) (subst_Tm ρ B) by eauto using join_substing.
move /ha : (hρ){ha} => [m [PA [h1 h2]]].
move /h : (hρ){h} => [S hS].
have ? : PA = S by eauto using InterpUniv_Join'. subst.
eauto.
Qed.
Lemma ST_Abs n Γ (a : Tm (S n)) A B i :
Γ TBind TPi A B (Univ i) ->
funcomp (ren_Tm shift) (scons A Γ) a B ->
Γ Abs a TBind TPi A B.
Proof.
rename a into b.
move /SemWt_Univ => + hb ρ hρ.
move /(_ _ hρ) => [PPi hPPi].
exists i, PPi. split => //.
simpl in hPPi.
move /InterpUniv_Bind_inv_nopf : hPPi.
move => [PA [hPA [hTot ?]]]. subst=>/=.
move => a PB ha. asimpl => hPB.
move : ρ_ok_cons (hPA) (hρ) (ha). repeat move/[apply].
move /hb.
intros (m & PB0 & hPB0 & hPB0').
replace PB0 with PB in * by hauto l:on use:InterpUniv_Functional'.
apply : InterpUniv_back_clos; eauto.
apply : RPar.AppAbs'; eauto using RPar.refl.
by asimpl.
Qed.
Lemma ST_App n Γ (b a : Tm n) A B :
Γ b TBind TPi A B ->
Γ a A ->
Γ App b a subst_Tm (scons a VarTm) B.
Proof.
move => hf hb ρ hρ.
move /(_ ρ hρ) : hf; intros (i & PPi & hPi & hf).
move /(_ ρ hρ) : hb; intros (j & PA & hPA & hb).
simpl in hPi.
move /InterpUniv_Bind_inv_nopf : hPi. intros (PA0 & hPA0 & hTot & ?). subst.
have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst.
move : hf (hb). move/[apply].
move : hTot hb. move/[apply].
asimpl. hauto lq:on.
Qed.