Finish adequacy
This commit is contained in:
parent
bf2a369824
commit
7021497615
2 changed files with 107 additions and 20 deletions
|
@ -1866,6 +1866,7 @@ Definition prov_extract_spec {n} u (a : Tm n) :=
|
|||
| TBind p A B => exists A0 B0, extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0
|
||||
| Univ i => extract a = Univ i
|
||||
| VarTm i => extract a = VarTm i
|
||||
| Bot => extract a = Bot
|
||||
| _ => True
|
||||
end.
|
||||
|
||||
|
@ -1886,6 +1887,8 @@ Proof.
|
|||
rewrite ren_subst_bot in h0.
|
||||
rewrite h0.
|
||||
eauto.
|
||||
+ move => _ /(_ Bot).
|
||||
by rewrite ren_subst_bot.
|
||||
+ move => i h /(_ Bot).
|
||||
by rewrite ren_subst_bot => ->.
|
||||
- hauto lq:on.
|
||||
|
@ -2363,12 +2366,11 @@ Lemma join_substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
|
|||
join (subst_Tm ρ a) (subst_Tm ρ b).
|
||||
Proof. hauto lq:on unfold:join use:Pars.substing. Qed.
|
||||
|
||||
|
||||
Fixpoint ne {n} (a : Tm n) :=
|
||||
match a with
|
||||
| VarTm i => true
|
||||
| TBind _ A B => false
|
||||
| Bot => false
|
||||
| Bot => true
|
||||
| App a b => ne a && nf b
|
||||
| Abs a => false
|
||||
| Univ _ => false
|
||||
|
|
|
@ -13,7 +13,7 @@ Definition ProdSpace {n} (PA : Tm n -> Prop)
|
|||
|
||||
Definition SumSpace {n} (PA : Tm n -> Prop)
|
||||
(PF : Tm n -> (Tm n -> Prop) -> Prop) t : Prop :=
|
||||
exists a b, rtc RPar'.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
|
||||
wne t \/ exists a b, rtc RPar'.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
|
||||
|
||||
Definition BindSpace {n} p := if p is TPi then @ProdSpace n else SumSpace.
|
||||
|
||||
|
@ -289,25 +289,36 @@ Proof.
|
|||
Qed.
|
||||
|
||||
Lemma ne_prov_inv n (a : Tm n) :
|
||||
ne a -> exists i, prov (VarTm i) a /\ extract a = VarTm i.
|
||||
ne a -> (exists i, prov (VarTm i) a) \/ prov Bot a.
|
||||
Proof.
|
||||
elim : n /a => //=.
|
||||
- hauto lq:on ctrs:prov.
|
||||
- hauto lq:on rew:off ctrs:prov b:on.
|
||||
- hauto lq:on ctrs:prov.
|
||||
- move => n.
|
||||
have : @prov n Bot Bot by auto using P_Bot.
|
||||
tauto.
|
||||
Qed.
|
||||
|
||||
Lemma ne_pars_inv n (a b : Tm n) :
|
||||
ne a -> rtc Par.R a b -> (exists i, prov (VarTm i) b) \/ prov Bot b.
|
||||
Proof.
|
||||
move /ne_prov_inv.
|
||||
sfirstorder use:prov_pars.
|
||||
Qed.
|
||||
|
||||
Lemma ne_pars_extract n (a b : Tm n) :
|
||||
ne a -> rtc Par.R a b -> (exists i, extract b = (VarTm i)) \/ extract b = Bot.
|
||||
Proof. hauto lq:on rew:off use:ne_pars_inv, prov_extract. Qed.
|
||||
|
||||
Lemma join_bind_ne_contra n p (A : Tm n) B C :
|
||||
ne C ->
|
||||
join (TBind p A B) C -> False.
|
||||
Proof.
|
||||
move => hC [D [h0 h1]].
|
||||
move /pars_pi_inv : h0 => [A0 [B0 [h2 [h3 h4]]]].
|
||||
have [i] : exists i, prov (VarTm i) C by sfirstorder use:ne_prov_inv.
|
||||
move => h.
|
||||
have {}h : prov (VarTm i) D by eauto using prov_pars.
|
||||
have : extract D = VarTm i by sfirstorder use:prov_extract.
|
||||
congruence.
|
||||
have : (exists i, extract D = (VarTm i)) \/ extract D = Bot by eauto using ne_pars_extract.
|
||||
sfirstorder.
|
||||
Qed.
|
||||
|
||||
Lemma join_univ_ne_contra n i C :
|
||||
|
@ -316,11 +327,8 @@ Lemma join_univ_ne_contra n i C :
|
|||
Proof.
|
||||
move => hC [D [h0 h1]].
|
||||
move /pars_univ_inv : h0 => ?.
|
||||
have [j] : exists i, prov (VarTm i) C by sfirstorder use:ne_prov_inv.
|
||||
move => h.
|
||||
have {}h : prov (VarTm j) D by eauto using prov_pars.
|
||||
have : extract D = VarTm j by sfirstorder use:prov_extract.
|
||||
congruence.
|
||||
have : (exists i, extract D = (VarTm i)) \/ extract D = Bot by eauto using ne_pars_extract.
|
||||
sfirstorder.
|
||||
Qed.
|
||||
|
||||
#[export]Hint Resolve join_univ_ne_contra join_bind_ne_contra join_univ_pi_contra join_symmetric join_transitive : join.
|
||||
|
@ -469,7 +477,7 @@ Lemma InterpUniv_Bind_inv_nopf n i p A B P (h : ⟦TBind p A B ⟧ i ↘ P) :
|
|||
Proof. hauto l:on use:InterpExt_Bind_inv_nopf rew:db:InterpUniv. Qed.
|
||||
|
||||
Lemma InterpExt_back_clos n i I (A : Tm n) PA :
|
||||
(forall j, forall a b, (RPar'.R a b) -> I j b -> I j a) ->
|
||||
(forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a) ->
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
forall a b, (RPar'.R a b) ->
|
||||
PA b -> PA a.
|
||||
|
@ -487,6 +495,13 @@ Proof.
|
|||
- eauto.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_back_clos_star n i I (A : Tm n) PA :
|
||||
(forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a) ->
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
forall a b, (rtc RPar'.R a b) ->
|
||||
PA b -> PA a.
|
||||
Proof. induction 3; hauto l:on use:InterpExt_back_clos. Qed.
|
||||
|
||||
Lemma InterpUniv_back_clos n i (A : Tm n) PA :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
forall a b, (RPar'.R a b) ->
|
||||
|
@ -507,19 +522,89 @@ Proof.
|
|||
hauto lq:on use:InterpUniv_back_clos.
|
||||
Qed.
|
||||
|
||||
Definition ρ_ok {n} (Γ : fin n -> Tm n) m (ρ : fin n -> Tm m) := forall i k PA,
|
||||
Lemma pars'_wn {n} a b :
|
||||
rtc RPar'.R a b ->
|
||||
@wn n b ->
|
||||
wn a.
|
||||
Proof. sfirstorder unfold:wn use:@relations.rtc_transitive. Qed.
|
||||
|
||||
(* P identifies a set of "reducibility candidates" *)
|
||||
Definition CR {n} (P : Tm n -> Prop) :=
|
||||
(forall a, P a -> wn a) /\
|
||||
(forall a, ne a -> P a).
|
||||
|
||||
Lemma adequacy_ext i n I A PA
|
||||
(hI0 : forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a)
|
||||
(hI : forall j, j < i -> CR (I j))
|
||||
(h : ⟦ A : Tm n ⟧ i ;; I ↘ PA) :
|
||||
CR PA /\ wn A.
|
||||
Proof.
|
||||
elim : A PA / h.
|
||||
- hauto unfold:wne use:wne_wn.
|
||||
- move => p A B PA PF hA hPA hTot hRes ihPF.
|
||||
rewrite /CR.
|
||||
have hb : PA Bot by firstorder.
|
||||
repeat split.
|
||||
+ case : p => /=.
|
||||
* qauto l:on use:ext_wn unfold:ProdSpace, CR.
|
||||
* rewrite /SumSpace => a []; first by eauto with nfne.
|
||||
move => [q0][q1]*.
|
||||
have : wn q0 /\ wn q1 by hauto q:on.
|
||||
qauto l:on use:wn_pair, pars'_wn.
|
||||
+ case : p => /=.
|
||||
* rewrite /ProdSpace.
|
||||
move => a ha c PB hc hPB.
|
||||
have hc' : wn c by sfirstorder.
|
||||
have : wne (App a c) by hauto lq:on use:wne_app ctrs:rtc.
|
||||
have h : (forall a, ne a -> PB a) by sfirstorder.
|
||||
suff : (forall a, wne a -> PB a) by hauto l:on.
|
||||
move => a0 [a1 [h0 h1]].
|
||||
eapply InterpExt_back_clos_star with (b := a1); eauto.
|
||||
* rewrite /SumSpace.
|
||||
move => a ha. left.
|
||||
sfirstorder ctrs:rtc.
|
||||
+ have wnA : wn A by firstorder.
|
||||
apply wn_bind => //.
|
||||
apply wn_antirenaming with (ρ := scons Bot VarTm);first by hauto q:on inv:option.
|
||||
hauto lq:on.
|
||||
- hauto l:on.
|
||||
- hauto lq:on rew:off ctrs:rtc.
|
||||
Qed.
|
||||
|
||||
Lemma adequacy i n A PA
|
||||
(h : ⟦ A : Tm n ⟧ i ↘ PA) :
|
||||
CR PA /\ wn A.
|
||||
Proof.
|
||||
move : i A PA h.
|
||||
elim /Wf_nat.lt_wf_ind => i ih A PA.
|
||||
simp InterpUniv.
|
||||
apply adequacy_ext.
|
||||
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
|
||||
hauto l:on use:InterpExt_Ne rew:db:InterpUniv.
|
||||
Qed.
|
||||
|
||||
Lemma adequacy_wne i n A PA a : ⟦ A : Tm n ⟧ i ↘ PA -> wne a -> PA a.
|
||||
Proof. qauto l:on use:InterpUniv_back_clos_star, adequacy unfold:CR. Qed.
|
||||
|
||||
Lemma adequacy_wn i n A PA (h : ⟦ A : Tm n ⟧ i ↘ PA) a : PA a -> wn a.
|
||||
Proof. hauto q:on use:adequacy. Qed.
|
||||
|
||||
Definition ρ_ok {n} (Γ : fin n -> Tm n) (ρ : fin n -> Tm 0) := forall i k PA,
|
||||
⟦ subst_Tm ρ (Γ i) ⟧ k ↘ PA -> PA (ρ i).
|
||||
|
||||
Definition SemWt {n} Γ (a A : Tm n) := forall m ρ, ρ_ok Γ m ρ -> exists k PA, ⟦ subst_Tm ρ A ⟧ k ↘ PA /\ PA (subst_Tm ρ a).
|
||||
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists k PA, ⟦ subst_Tm ρ A ⟧ k ↘ PA /\ PA (subst_Tm ρ a).
|
||||
Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70).
|
||||
|
||||
(* Semantic context wellformedness *)
|
||||
Definition SemWff {n} Γ := forall (i : fin n), exists j, Γ ⊨ Γ i ∈ Univ j.
|
||||
Notation "⊨ Γ" := (SemWff Γ) (at level 70).
|
||||
|
||||
Lemma ρ_ok_id n (Γ : fin n -> Tm n) :
|
||||
ρ_ok Γ n VarTm.
|
||||
Proof. rewrite /ρ_ok. inversion i; subst. Qed.
|
||||
Lemma ρ_ok_bot n (Γ : fin n -> Tm n) :
|
||||
ρ_ok Γ (fun _ => Bot).
|
||||
Proof.
|
||||
rewrite /ρ_ok.
|
||||
move => i k PA.
|
||||
inversion i; subst. Qed.
|
||||
|
||||
Lemma ρ_ok_cons n i (Γ : fin n -> Tm n) ρ a PA A :
|
||||
⟦ subst_Tm ρ A ⟧ i ↘ PA -> PA a ->
|
||||
|
|
Loading…
Add table
Reference in a new issue