Finish full commutativity
This commit is contained in:
parent
4599c1d65d
commit
6daef9c807
1 changed files with 20 additions and 1 deletions
|
@ -417,7 +417,7 @@ Proof.
|
||||||
split => //.
|
split => //.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma commutativity n (a b0 b1 : Tm n) :
|
Lemma commutativity0 n (a b0 b1 : Tm n) :
|
||||||
EPar.R a b0 -> RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c.
|
EPar.R a b0 -> RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c.
|
||||||
Proof.
|
Proof.
|
||||||
move => h. move : b1.
|
move => h. move : b1.
|
||||||
|
@ -483,6 +483,25 @@ Proof.
|
||||||
+ hauto lq:on ctrs:EPar.R use:RPars.ProjCong.
|
+ hauto lq:on ctrs:EPar.R use:RPars.ProjCong.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Lemma commutativity1 n (a b0 b1 : Tm n) :
|
||||||
|
EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c.
|
||||||
|
Proof.
|
||||||
|
move => + h. move : b0.
|
||||||
|
elim : a b1 / h.
|
||||||
|
- sfirstorder.
|
||||||
|
- qauto l:on use:relations.rtc_transitive, commutativity0.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma commutativity n (a b0 b1 : Tm n) :
|
||||||
|
rtc EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ rtc EPar.R b1 c.
|
||||||
|
move => h. move : b1. elim : a b0 /h.
|
||||||
|
- sfirstorder.
|
||||||
|
- move => a0 a1 a2 + ha1 ih b1 +.
|
||||||
|
move : commutativity1; repeat move/[apply].
|
||||||
|
hauto q:on ctrs:rtc.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
|
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
|
||||||
Proof. induction 1; hauto lq:on ctrs:Par.R. Qed.
|
Proof. induction 1; hauto lq:on ctrs:Par.R. Qed.
|
||||||
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue