Add the boolean extension without junk rules

This commit is contained in:
Yiyun Liu 2025-01-11 00:17:04 -05:00
parent 53bef034ad
commit 6d9ed23de9

View file

@ -33,8 +33,6 @@ Module Par.
R b0 b1 ->
R c0 c1 ->
R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1))
| AppBool b a :
R (App (BVal b) a) (BVal b)
| ProjAbs p a0 a1 :
R a0 a1 ->
R (Proj p (Abs a0)) (Abs (Proj p a1))
@ -42,19 +40,6 @@ Module Par.
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1)
| ProjBool p b :
R (Proj p (BVal b)) (BVal b)
| IfAbs (a0 a1 : Tm (S n)) b0 b1 c0 c1 :
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (If (Abs a0) b0 c0) (Abs (If a1 (ren_Tm shift b1) (ren_Tm shift c1)))
| IfPair a0 a1 b0 b1 c0 c1 d0 d1 :
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R d0 d1 ->
R (If (Pair a0 b0) c0 d0) (Pair (If a1 c1 d1) (If b1 c1 d1))
| IfBool a b0 b1 c0 c1 :
R b0 b1 ->
R c0 c1 ->
@ -133,13 +118,6 @@ Module Par.
R a0 b.
Proof. move => ->; apply AppEta. Qed.
Lemma IfAbs' n (a0 a1 : Tm (S n)) (b0 b1 c0 c1 : Tm n) u :
u = (Abs (If a1 (ren_Tm shift b1) (ren_Tm shift c1))) ->
@R (S n) a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (If (Abs a0) b0 c0) u.
Proof. move => ->. apply IfAbs. Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
@ -149,7 +127,6 @@ Module Par.
move => *; apply : AppAbs'; eauto; by asimpl.
all : match goal with
| [ |- context[var_zero]] => move => *; apply : AppEta'; eauto; by asimpl
| [ |- context[ren_Tm]] => move => * /=; apply : IfAbs'; eauto; by asimpl
| _ => qauto ctrs:R use:ProjPair', IfBool'
end.
Qed.
@ -164,14 +141,8 @@ Module Par.
by asimpl.
hauto l:on use:renaming inv:option.
- hauto lq:on rew:off ctrs:R.
- hauto lq:on rew:off ctrs:R.
- hauto l:on inv:option use:renaming ctrs:R.
- hauto lq:on use:ProjPair'.
- hauto lq:on rew:off ctrs:R.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ρ0 ρ1 hρ /=.
eapply IfAbs' with (a1 := (subst_Tm (up_Tm_Tm ρ1) a1)); eauto. by asimpl.
hauto l:on use:renaming inv:option.
- qauto l:on ctrs:R.
- hauto q:on use:IfBool'.
- move => n a0 a1 ha iha m ρ0 ρ1 hρ /=.
apply : AppEta'; eauto. by asimpl.
@ -217,8 +188,6 @@ Module Par.
eexists. split.
apply AppPair; hauto. subst.
by asimpl.
- move => n b a m ξ []//=.
hauto q:on ctrs:R inv:Tm.
- move => n p a0 a1 ha iha m ξ []//= p0 []//= t [*]. subst.
spec_refl. move : iha => [b0 [? ?]]. subst.
eexists. split. apply ProjAbs; eauto. by asimpl.
@ -228,23 +197,6 @@ Module Par.
move : ihb => [c0 [? ?]]. subst.
eexists. split. by eauto using ProjPair.
hauto q:on.
- move => n p b m ξ []//=.
move => + []//=.
hauto lq:on ctrs:R.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ξ []//= t t0 t1 [h *]. subst.
case : t h => // t [*]. subst.
spec_refl.
move : iha => [a2 [iha ?]]. subst.
move : ihb => [b2 [ihb ?]]. subst.
move : ihc => [c2 [ihc ?]]. subst.
exists (Abs (If a2 (ren_Tm shift b2) (ren_Tm shift c2))).
split; last by asimpl.
hauto lq:on ctrs:R.
- move => n a0 a1 b0 b1 c0 c1 d0 d1 ha iha hb ihb hc ihc hd ihd m ξ []//=.
move => a2 b2 c2 [h *]. subst.
case : a2 h => //= a3 b3 [*]. subst.
spec_refl.
hauto lq:on ctrs:R.
- move => n a b0 b1 c0 c1 hb ihb hc ihc m ξ []//= p0 p1 p2 [h *]. subst.
spec_refl.
move : ihb => [b0 [? ?]].
@ -377,8 +329,6 @@ Module RPar.
R b0 b1 ->
R c0 c1 ->
R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1))
| AppBool b a :
R (App (BVal b) a) (BVal b)
| ProjAbs p a0 a1 :
R a0 a1 ->
R (Proj p (Abs a0)) (Abs (Proj p a1))
@ -386,19 +336,6 @@ Module RPar.
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1)
| ProjBool p b :
R (Proj p (BVal b)) (BVal b)
| IfAbs (a0 a1 : Tm (S n)) b0 b1 c0 c1 :
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (If (Abs a0) b0 c0) (Abs (If a1 (ren_Tm shift b1) (ren_Tm shift c1)))
| IfPair a0 a1 b0 b1 c0 c1 d0 d1 :
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R d0 d1 ->
R (If (Pair a0 b0) c0 d0) (Pair (If a1 c1 d1) (If b1 c1 d1))
| IfBool a b0 b1 c0 c1 :
R b0 b1 ->
R c0 c1 ->
@ -468,19 +405,11 @@ Module RPar.
Proof. move => ->. apply IfBool. Qed.
Lemma IfAbs' n (a0 a1 : Tm (S n)) (b0 b1 c0 c1 : Tm n) u :
u = (Abs (If a1 (ren_Tm shift b1) (ren_Tm shift c1))) ->
@R (S n) a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (If (Abs a0) b0 c0) u.
Proof. move => ->. apply IfAbs. Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h; try solve [(move => *; apply : AppAbs'; eauto; by asimpl) | (move => *; apply : IfAbs'; eauto; by asimpl)].
elim : n a b /h; try solve [(move => *; apply : AppAbs'; eauto; by asimpl)].
all : try qauto ctrs:R use:ProjPair', IfBool'.
Qed.
@ -510,14 +439,8 @@ Module RPar.
apply : AppAbs'; eauto using morphing_up.
by asimpl.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R use:ProjPair' use:morphing_up.
- sfirstorder.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ρ0 ρ1 hρ /=.
apply : IfAbs'; eauto using morphing_up.
by asimpl.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R use:IfBool' use:morphing_up.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R use:morphing_up.
@ -603,9 +526,6 @@ Module RPar.
eexists. split.
apply AppPair; hauto. subst.
by asimpl.
- move => n b a m ρ hρ []//=; first by antiimp.
case => //=; first by antiimp.
hauto lq:on ctrs:R.
- move => n p a0 a1 ha iha m ρ hρ []//=;
first by antiimp.
move => p0 []//= t [*]; first by antiimp. subst.
@ -623,31 +543,6 @@ Module RPar.
move : ihb => [c0 [? ?]]. subst.
eexists. split. by eauto using ProjPair.
hauto q:on.
- move => n p b m ρ hρ []//=; first by antiimp.
move => p0 + []//=. case => //=; first by antiimp.
hauto lq:on ctrs:R.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ρ hρ []//=; first by antiimp.
move => + b2 c2 [+ *]. subst. case => //=; first by antiimp.
move => a [*]. subst.
have /var_or_bot_up hρ' := hρ.
move : iha hρ' => /[apply] iha.
move : ihb (hρ) => /[apply] ihb.
move : ihc hρ => /[apply] ihc.
spec_refl.
move : iha => [a0 [ha0 ?]]. subst.
move : ihb => [b0 [hb0 ?]]. subst.
move : ihc => [c0 [hc0 ?]]. subst.
exists (Abs (If a0 (ren_Tm shift b0) (ren_Tm shift c0))). split.
hauto lq:on ctrs:R.
by asimpl.
- move => n a0 a1 b0 b1 c0 c1 d0 d1 ha iha hb ihb hc ihc hd ihd m ρ hρ []//=; first by antiimp.
move => a2 b2 c2 [+ *]. subst. case : a2 => //=; first by antiimp.
move => a3 b3 [*]. subst.
have {}/iha := (hρ) => iha.
have {}/ihb := (hρ) => ihb.
have {}/ihc := (hρ) => ihc.
spec_refl.
hauto lq:on ctrs:R.
- move => n a b0 b1 c0 c1 hb ihb hc ihc m ρ hρ []//=; first by antiimp.
move => t t0 t1 [h *]. subst.
case : t h => //=; first by antiimp.
@ -1528,7 +1423,6 @@ Proof.
split.
hauto lq:on use:relations.rtc_transitive, RPars.AppCong.
apply EPar.PairCong; by apply EPar.AppCong.
+ admit.
+ hauto lq:on ctrs:EPar.R use:RPars.AppCong.
- hauto lq:on ctrs:EPar.R inv:RPar.R use:RPars.PairCong.
- move => n p a b0 h0 ih0 b1.
@ -1543,7 +1437,6 @@ Proof.
move /Pair_EPar : ih1 => [/(_ p)[d [ihd ihd']] _].
exists d. split => //.
hauto lq:on use:RPars.ProjCong, relations.rtc_transitive.
+ admit.
+ hauto lq:on ctrs:EPar.R use:RPars.ProjCong.
- hauto lq:on inv:RPar.R ctrs:EPar.R, rtc use:RPars.BindCong.
- hauto l:on ctrs:EPar.R inv:RPar.R.
@ -1552,10 +1445,9 @@ Proof.
- hauto l:on ctrs:EPar.R inv:RPar.R.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc u.
elim /RPar.inv => //= _.
+ admit.
+ admit.
+ admit.
+ (* Need the rule that if commutes with abs *)
move => a2 b2 b3 c2 c3 hb0 hbc [*]. subst.
admit.
Admitted.