diff --git a/theories/fp_red.v b/theories/fp_red.v index 652eac5..0c207be 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -1214,11 +1214,16 @@ Proof. move => h. elim : n a b /h; hauto lq:on ctrs:Par.R. Qed. -Lemma rtc_idem n (a b : Tm n) : rtc (rtc EPar.R) a b -> rtc EPar.R a b. +Lemma rtc_idem n (R : Tm n -> Tm n -> Prop) (a b : Tm n) : rtc (rtc R) a b -> rtc R a b. Proof. induction 1; hauto l:on use:@relations.rtc_transitive, @rtc_r. Qed. +Lemma EPars_EReds {n} (a b : Tm n) : rtc EPar.R a b <-> rtc ERed.R a b. +Proof. + sfirstorder use:@relations.rtc_subrel, EPar_ERed, rtc_idem, ERed_EPar. +Qed. + Lemma prov_rpar n (u : Tm n) a b : prov u a -> RPar.R a b -> prov u b. Proof. move => h. @@ -1251,19 +1256,6 @@ Proof. - hauto l:on ctrs:RPar.R inv:RPar.R. Qed. -Lemma prov_oexp n (u : Tm n) a b : prov u a -> OExp.R a b -> prov u b. -Proof. - move => + h. move : u. - case : a b / h. - - move => a u h. - constructor. move => b. asimpl. by constructor. - - move => a u h. by do 2 constructor. -Qed. - -Lemma prov_oexps n (u : Tm n) a b : prov u a -> rtc OExp.R a b -> prov u b. -Proof. - induction 2; sfirstorder use:prov_oexp. -Qed. Lemma prov_lam n (u : Tm n) a : prov u a <-> prov u (Abs (App (ren_Tm shift a) (VarTm var_zero))). Proof. @@ -1320,6 +1312,11 @@ Proof. - hauto lq:on inv:ERed.R, prov ctrs:prov. Qed. +Lemma prov_ereds n (u : Tm n) a b : prov u a -> rtc ERed.R a b -> prov u b. +Proof. + induction 2; sfirstorder use:prov_ered. +Qed. + Fixpoint extract {n} (a : Tm n) : Tm n := match a with | TBind p A B => TBind p A B @@ -1730,6 +1727,24 @@ Proof. sfirstorder. Qed. +Lemma prov_erpar n (u : Tm n) a b : prov u a -> ERPar.R a b -> prov u b. +Proof. + move => h []. + - sfirstorder use:prov_rpar. + - move /EPar_ERed. + sfirstorder use:prov_ereds. +Qed. + +Lemma prov_pars n (u : Tm n) a b : prov u a -> rtc Par.R a b -> prov u b. +Proof. + move => h /Pars_ERPar. + move => h0. + move : h. + elim : a b /h0. + - done. + - hauto lq:on use:prov_erpar. +Qed. + Lemma Par_confluent n (a b c : Tm n) : rtc Par.R a b -> rtc Par.R a c -> @@ -1762,8 +1777,7 @@ Lemma pars_univ_inv n i (c : Tm n) : Proof. have : prov (Univ i) (Univ i : Tm n) by sfirstorder. move : prov_pars. repeat move/[apply]. - move /(_ ltac:(reflexivity)). - by move/prov_extract. + apply prov_extract. Qed. Lemma pars_pi_inv n p (A : Tm n) B C : @@ -1771,10 +1785,18 @@ Lemma pars_pi_inv n p (A : Tm n) B C : exists A0 B0, extract C = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0. Proof. - have : prov (TBind p A B) (TBind p A B) by sfirstorder. + have : prov (TBind p A B) (TBind p A B) by hauto lq:on ctrs:prov, rtc. move : prov_pars. repeat move/[apply]. - move /(_ eq_refl). - by move /prov_extract. + apply prov_extract. +Qed. + +Lemma pars_var_inv n (i : fin n) C : + rtc Par.R (VarTm i) C -> + extract C = VarTm i. +Proof. + have : prov (VarTm i) (VarTm i) by hauto lq:on ctrs:prov, rtc. + move : prov_pars. repeat move/[apply]. + apply prov_extract. Qed. Lemma pars_univ_inj n i j (C : Tm n) :