Add pi type

This commit is contained in:
Yiyun Liu 2024-12-24 01:09:02 -05:00
parent 90b24b259b
commit 46ec21b763
3 changed files with 95 additions and 4 deletions

View file

@ -7,3 +7,4 @@ Abs : (bind Tm in Tm) -> Tm
App : Tm -> Tm -> Tm App : Tm -> Tm -> Tm
Pair : Tm -> Tm -> Tm Pair : Tm -> Tm -> Tm
Proj : PTag -> Tm -> Tm Proj : PTag -> Tm -> Tm
Pi : Tm -> (bind Tm in Tm) -> Tm

View file

@ -24,7 +24,8 @@ Inductive Tm (n_Tm : nat) : Type :=
| Abs : Tm (S n_Tm) -> Tm n_Tm | Abs : Tm (S n_Tm) -> Tm n_Tm
| App : Tm n_Tm -> Tm n_Tm -> Tm n_Tm | App : Tm n_Tm -> Tm n_Tm -> Tm n_Tm
| Pair : Tm n_Tm -> Tm n_Tm -> Tm n_Tm | Pair : Tm n_Tm -> Tm n_Tm -> Tm n_Tm
| Proj : PTag -> Tm n_Tm -> Tm n_Tm. | Proj : PTag -> Tm n_Tm -> Tm n_Tm
| Pi : Tm n_Tm -> Tm (S n_Tm) -> Tm n_Tm.
Lemma congr_Abs {m_Tm : nat} {s0 : Tm (S m_Tm)} {t0 : Tm (S m_Tm)} Lemma congr_Abs {m_Tm : nat} {s0 : Tm (S m_Tm)} {t0 : Tm (S m_Tm)}
(H0 : s0 = t0) : Abs m_Tm s0 = Abs m_Tm t0. (H0 : s0 = t0) : Abs m_Tm s0 = Abs m_Tm t0.
@ -56,6 +57,14 @@ exact (eq_trans (eq_trans eq_refl (ap (fun x => Proj m_Tm x s1) H0))
(ap (fun x => Proj m_Tm t0 x) H1)). (ap (fun x => Proj m_Tm t0 x) H1)).
Qed. Qed.
Lemma congr_Pi {m_Tm : nat} {s0 : Tm m_Tm} {s1 : Tm (S m_Tm)} {t0 : Tm m_Tm}
{t1 : Tm (S m_Tm)} (H0 : s0 = t0) (H1 : s1 = t1) :
Pi m_Tm s0 s1 = Pi m_Tm t0 t1.
Proof.
exact (eq_trans (eq_trans eq_refl (ap (fun x => Pi m_Tm x s1) H0))
(ap (fun x => Pi m_Tm t0 x) H1)).
Qed.
Lemma upRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) : Lemma upRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) :
fin (S m) -> fin (S n). fin (S m) -> fin (S n).
Proof. Proof.
@ -76,6 +85,7 @@ Fixpoint ren_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
| App _ s0 s1 => App n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1) | App _ s0 s1 => App n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1)
| Pair _ s0 s1 => Pair n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1) | Pair _ s0 s1 => Pair n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1)
| Proj _ s0 s1 => Proj n_Tm s0 (ren_Tm xi_Tm s1) | Proj _ s0 s1 => Proj n_Tm s0 (ren_Tm xi_Tm s1)
| Pi _ s0 s1 => Pi n_Tm (ren_Tm xi_Tm s0) (ren_Tm (upRen_Tm_Tm xi_Tm) s1)
end. end.
Lemma up_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) : Lemma up_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) :
@ -99,6 +109,8 @@ Fixpoint subst_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
| App _ s0 s1 => App n_Tm (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1) | App _ s0 s1 => App n_Tm (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1)
| Pair _ s0 s1 => Pair n_Tm (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1) | Pair _ s0 s1 => Pair n_Tm (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1)
| Proj _ s0 s1 => Proj n_Tm s0 (subst_Tm sigma_Tm s1) | Proj _ s0 s1 => Proj n_Tm s0 (subst_Tm sigma_Tm s1)
| Pi _ s0 s1 =>
Pi n_Tm (subst_Tm sigma_Tm s0) (subst_Tm (up_Tm_Tm sigma_Tm) s1)
end. end.
Lemma upId_Tm_Tm {m_Tm : nat} (sigma : fin m_Tm -> Tm m_Tm) Lemma upId_Tm_Tm {m_Tm : nat} (sigma : fin m_Tm -> Tm m_Tm)
@ -134,6 +146,9 @@ subst_Tm sigma_Tm s = s :=
congr_Pair (idSubst_Tm sigma_Tm Eq_Tm s0) congr_Pair (idSubst_Tm sigma_Tm Eq_Tm s0)
(idSubst_Tm sigma_Tm Eq_Tm s1) (idSubst_Tm sigma_Tm Eq_Tm s1)
| Proj _ s0 s1 => congr_Proj (eq_refl s0) (idSubst_Tm sigma_Tm Eq_Tm s1) | Proj _ s0 s1 => congr_Proj (eq_refl s0) (idSubst_Tm sigma_Tm Eq_Tm s1)
| Pi _ s0 s1 =>
congr_Pi (idSubst_Tm sigma_Tm Eq_Tm s0)
(idSubst_Tm (up_Tm_Tm sigma_Tm) (upId_Tm_Tm _ Eq_Tm) s1)
end. end.
Lemma upExtRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) Lemma upExtRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n)
@ -172,6 +187,10 @@ Fixpoint extRen_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
(extRen_Tm xi_Tm zeta_Tm Eq_Tm s1) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s1)
| Proj _ s0 s1 => | Proj _ s0 s1 =>
congr_Proj (eq_refl s0) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s1) congr_Proj (eq_refl s0) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s1)
| Pi _ s0 s1 =>
congr_Pi (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0)
(extRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm)
(upExtRen_Tm_Tm _ _ Eq_Tm) s1)
end. end.
Lemma upExt_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) Lemma upExt_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm)
@ -211,6 +230,10 @@ Fixpoint ext_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
congr_Pair (ext_Tm sigma_Tm tau_Tm Eq_Tm s0) congr_Pair (ext_Tm sigma_Tm tau_Tm Eq_Tm s0)
(ext_Tm sigma_Tm tau_Tm Eq_Tm s1) (ext_Tm sigma_Tm tau_Tm Eq_Tm s1)
| Proj _ s0 s1 => congr_Proj (eq_refl s0) (ext_Tm sigma_Tm tau_Tm Eq_Tm s1) | Proj _ s0 s1 => congr_Proj (eq_refl s0) (ext_Tm sigma_Tm tau_Tm Eq_Tm s1)
| Pi _ s0 s1 =>
congr_Pi (ext_Tm sigma_Tm tau_Tm Eq_Tm s0)
(ext_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm) (upExt_Tm_Tm _ _ Eq_Tm)
s1)
end. end.
Lemma up_ren_ren_Tm_Tm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l) Lemma up_ren_ren_Tm_Tm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l)
@ -250,6 +273,10 @@ Fixpoint compRenRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
(compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1) (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1)
| Proj _ s0 s1 => | Proj _ s0 s1 =>
congr_Proj (eq_refl s0) (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1) congr_Proj (eq_refl s0) (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1)
| Pi _ s0 s1 =>
congr_Pi (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0)
(compRenRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm)
(upRen_Tm_Tm rho_Tm) (up_ren_ren _ _ _ Eq_Tm) s1)
end. end.
Lemma up_ren_subst_Tm_Tm {k : nat} {l : nat} {m_Tm : nat} Lemma up_ren_subst_Tm_Tm {k : nat} {l : nat} {m_Tm : nat}
@ -299,6 +326,10 @@ Fixpoint compRenSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
| Proj _ s0 s1 => | Proj _ s0 s1 =>
congr_Proj (eq_refl s0) congr_Proj (eq_refl s0)
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1) (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1)
| Pi _ s0 s1 =>
congr_Pi (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0)
(compRenSubst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm tau_Tm)
(up_Tm_Tm theta_Tm) (up_ren_subst_Tm_Tm _ _ _ Eq_Tm) s1)
end. end.
Lemma up_subst_ren_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat} Lemma up_subst_ren_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
@ -369,6 +400,10 @@ ren_Tm zeta_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
| Proj _ s0 s1 => | Proj _ s0 s1 =>
congr_Proj (eq_refl s0) congr_Proj (eq_refl s0)
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1) (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1)
| Pi _ s0 s1 =>
congr_Pi (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0)
(compSubstRen_Tm (up_Tm_Tm sigma_Tm) (upRen_Tm_Tm zeta_Tm)
(up_Tm_Tm theta_Tm) (up_subst_ren_Tm_Tm _ _ _ Eq_Tm) s1)
end. end.
Lemma up_subst_subst_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat} Lemma up_subst_subst_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
@ -440,6 +475,10 @@ subst_Tm tau_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
| Proj _ s0 s1 => | Proj _ s0 s1 =>
congr_Proj (eq_refl s0) congr_Proj (eq_refl s0)
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1) (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1)
| Pi _ s0 s1 =>
congr_Pi (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0)
(compSubstSubst_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm)
(up_Tm_Tm theta_Tm) (up_subst_subst_Tm_Tm _ _ _ Eq_Tm) s1)
end. end.
Lemma renRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat} Lemma renRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
@ -550,6 +589,10 @@ Fixpoint rinst_inst_Tm {m_Tm : nat} {n_Tm : nat}
(rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1) (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1)
| Proj _ s0 s1 => | Proj _ s0 s1 =>
congr_Proj (eq_refl s0) (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1) congr_Proj (eq_refl s0) (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1)
| Pi _ s0 s1 =>
congr_Pi (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0)
(rinst_inst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm sigma_Tm)
(rinstInst_up_Tm_Tm _ _ Eq_Tm) s1)
end. end.
Lemma rinstInst'_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm) Lemma rinstInst'_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
@ -748,6 +791,8 @@ Core.
Arguments VarTm {n_Tm}. Arguments VarTm {n_Tm}.
Arguments Pi {n_Tm}.
Arguments Proj {n_Tm}. Arguments Proj {n_Tm}.
Arguments Pair {n_Tm}. Arguments Pair {n_Tm}.

View file

@ -49,7 +49,11 @@ Module Par.
R (Pair a0 b0) (Pair a1 b1) R (Pair a0 b0) (Pair a1 b1)
| ProjCong p a0 a1 : | ProjCong p a0 a1 :
R a0 a1 -> R a0 a1 ->
R (Proj p a0) (Proj p a1). R (Proj p a0) (Proj p a1)
| PiCong A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
R (Pi A0 B0) (Pi A1 B1).
End Par. End Par.
(***************** Beta rules only ***********************) (***************** Beta rules only ***********************)
@ -89,7 +93,11 @@ Module RPar.
R (Pair a0 b0) (Pair a1 b1) R (Pair a0 b0) (Pair a1 b1)
| ProjCong p a0 a1 : | ProjCong p a0 a1 :
R a0 a1 -> R a0 a1 ->
R (Proj p a0) (Proj p a1). R (Proj p a0) (Proj p a1)
| PiCong A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
R (Pi A0 B0) (Pi A1 B1).
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop. Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
@ -154,6 +162,7 @@ Module RPar.
- hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R. - hauto lq:on ctrs:R.
- hauto lq:on ctrs:R. - hauto lq:on ctrs:R.
- hauto lq:on ctrs:R use:morphing_up.
Qed. Qed.
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) : Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
@ -196,7 +205,11 @@ Module EPar.
R (Pair a0 b0) (Pair a1 b1) R (Pair a0 b0) (Pair a1 b1)
| ProjCong p a0 a1 : | ProjCong p a0 a1 :
R a0 a1 -> R a0 a1 ->
R (Proj p a0) (Proj p a1). R (Proj p a0) (Proj p a1)
| PiCong A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
R (Pi A0 B0) (Pi A1 B1).
Lemma refl n (a : Tm n) : EPar.R a a. Lemma refl n (a : Tm n) : EPar.R a a.
Proof. Proof.
@ -238,6 +251,7 @@ Module EPar.
- hauto q:on ctrs:R. - hauto q:on ctrs:R.
- hauto q:on ctrs:R. - hauto q:on ctrs:R.
- hauto q:on ctrs:R. - hauto q:on ctrs:R.
- hauto l:on ctrs:R use:renaming inv:option.
Qed. Qed.
Lemma substing n a0 a1 (b0 b1 : Tm n) : Lemma substing n a0 a1 (b0 b1 : Tm n) :
@ -315,6 +329,12 @@ Module RPars.
rtc RPar.R (App a0 b0) (App a1 b1). rtc RPar.R (App a0 b0) (App a1 b1).
Proof. solve_s. Qed. Proof. solve_s. Qed.
Lemma PiCong n (a0 a1 : Tm n) b0 b1 :
rtc RPar.R a0 a1 ->
rtc RPar.R b0 b1 ->
rtc RPar.R (Pi a0 b0) (Pi a1 b1).
Proof. solve_s. Qed.
Lemma PairCong n (a0 a1 b0 b1 : Tm n) : Lemma PairCong n (a0 a1 b0 b1 : Tm n) :
rtc RPar.R a0 a1 -> rtc RPar.R a0 a1 ->
rtc RPar.R b0 b1 -> rtc RPar.R b0 b1 ->
@ -530,6 +550,7 @@ Proof.
exists d. split => //. exists d. split => //.
hauto lq:on use:RPars.ProjCong, relations.rtc_transitive. hauto lq:on use:RPars.ProjCong, relations.rtc_transitive.
+ hauto lq:on ctrs:EPar.R use:RPars.ProjCong. + hauto lq:on ctrs:EPar.R use:RPars.ProjCong.
- hauto lq:on inv:RPar.R ctrs:EPar.R, rtc use:RPars.PiCong.
Qed. Qed.
Lemma commutativity1 n (a b0 b1 : Tm n) : Lemma commutativity1 n (a b0 b1 : Tm n) :
@ -599,6 +620,21 @@ Proof.
- hauto l:on ctrs:OExp.R. - hauto l:on ctrs:OExp.R.
Qed. Qed.
Lemma Pi_EPar' n (a : Tm n) b u :
EPar.R (Pi a b) u ->
(exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (Pi a0 b0) u).
Proof.
move E : (Pi a b) => t h.
move : a b E. elim : n t u /h => //=.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
Lemma Pair_EPar' n (a b u : Tm n) : Lemma Pair_EPar' n (a b u : Tm n) :
EPar.R (Pair a b) u -> EPar.R (Pair a b) u ->
exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (Pair a0 b0) u. exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (Pair a0 b0) u.
@ -654,6 +690,13 @@ Proof.
move : OExp.commutativity0 h1; repeat move/[apply]. move : OExp.commutativity0 h1; repeat move/[apply].
move => [d1 h1]. move => [d1 h1].
exists d1. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. exists d1. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
- move => n a0 a1 b0 b1 ha iha hb ihb c.
move /Pi_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}.
have : EPar.R (Pi a2 b2)(Pi a3 b3)
by hauto l:on use:EPar.PiCong.
move : OExp.commutativity0 h2; repeat move/[apply].
move => [d h].
exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
Qed. Qed.
Function tstar {n} (a : Tm n) := Function tstar {n} (a : Tm n) :=
@ -668,6 +711,7 @@ Function tstar {n} (a : Tm n) :=
| Proj p (Pair a b) => if p is PL then (tstar a) else (tstar b) | Proj p (Pair a b) => if p is PL then (tstar a) else (tstar b)
| Proj p (Abs a) => (Abs (Proj p (tstar a))) | Proj p (Abs a) => (Abs (Proj p (tstar a)))
| Proj p a => Proj p (tstar a) | Proj p a => Proj p (tstar a)
| Pi a b => Pi (tstar a) (tstar b)
end. end.
Lemma RPar_triangle n (a : Tm n) : forall b, RPar.R a b -> RPar.R b (tstar a). Lemma RPar_triangle n (a : Tm n) : forall b, RPar.R a b -> RPar.R b (tstar a).
@ -683,6 +727,7 @@ Proof.
- hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'. - hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'.
- hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
Qed. Qed.
Lemma RPar_diamond n (c a1 b1 : Tm n) : Lemma RPar_diamond n (c a1 b1 : Tm n) :