Change the definition of commutativity

This commit is contained in:
Yiyun Liu 2024-12-16 21:41:29 -05:00
parent b0dbcba2d0
commit 45bc061b4d

View file

@ -1,7 +1,9 @@
Require Import ssreflect.
From stdpp Require Import relations (rtc (..)).
From Hammer Require Import Tactics.
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
(* Trying my best to not write C style module_funcname *)
Module Par.
Inductive R {n} : Tm n -> Tm n -> Prop :=
@ -175,6 +177,8 @@ Module EPar.
all : qauto ctrs:R.
Qed.
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
End EPar.
@ -182,23 +186,104 @@ Local Ltac com_helper :=
split; [hauto lq:on ctrs:RPar.R use: RPar.refl, RPar.renaming
|hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming].
Lemma commutativity n (a b0 b1 : Tm n) : EPar.R a b0 -> RPar.R a b1 -> exists c, RPar.R b0 c /\ EPar.R b1 c.
Lemma RPars_AbsCong n (a b : Tm (S n)) :
rtc RPar.R a b ->
rtc RPar.R (Abs a) (Abs b).
Proof. induction 1; hauto l:on ctrs:RPar.R, rtc. Qed.
Lemma RPars_AppCong n (a0 a1 b : Tm n) :
rtc RPar.R a0 a1 ->
rtc RPar.R (App a0 b) (App a1 b).
Proof.
move => h. move : b.
elim : a0 a1 /h.
- qauto ctrs:RPar.R, rtc.
- move => x y z h0 h1 ih b.
apply rtc_l with (y := App y b) => //.
hauto lq:on ctrs:RPar.R use:RPar.refl.
Qed.
Lemma RPars_PairCong n (a0 a1 b0 b1 : Tm n) :
rtc RPar.R a0 a1 ->
rtc RPar.R b0 b1 ->
rtc RPar.R (Pair a0 b0) (Pair a1 b1).
Proof.
move => h. move : b0 b1.
elim : a0 a1 /h.
- move => x b0 b1 h.
elim : b0 b1 /h.
by auto using rtc_refl.
move => x0 y z h0 h1 h2.
apply : rtc_l; eauto.
by eauto using RPar.refl, RPar.PairCong.
- move => x y z h0 h1 ih b0 b1 h.
apply : rtc_l; eauto.
by eauto using RPar.refl, RPar.PairCong.
Qed.
Lemma RPars_renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) :
rtc RPar.R a0 a1 ->
rtc RPar.R (ren_Tm ξ a0) (ren_Tm ξ a1).
Proof.
induction 1.
- apply rtc_refl.
- eauto using RPar.renaming, rtc_l.
Qed.
Lemma commutativity n (a b0 b1 : Tm n) : EPar.R a b0 -> RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c.
Proof.
move => h. move : b1.
elim : n a b0 / h.
- move => n a b0 ha iha b1 hb.
move : iha (hb) => /[apply].
move => [c [ih0 ih1]].
exists (Abs (App (ren_Tm shift c) (VarTm var_zero))); com_helper.
exists (Abs (App (ren_Tm shift c) (VarTm var_zero))).
split.
+ sfirstorder use:RPars_AbsCong, RPars_AppCong, RPars_renaming.
+ hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming.
- move => n a b0 hb0 ihb0 b1 /[dup] hb1 {}/ihb0.
move => [c [ih0 ih1]].
exists (Pair c c); com_helper.
- hauto lq:on ctrs:RPar.R, EPar.R inv:RPar.R.
- hauto lq:on ctrs:RPar.R, EPar.R inv:RPar.R.
exists (Pair c c). split.
+ by apply RPars_PairCong.
+ hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming.
- admit. (* hauto lq:on ctrs:RPar.R, EPar.R inv:RPar.R. *)
- admit. (* hauto lq:on ctrs:RPar.R, EPar.R inv:RPar.R. *)
- move => n a0 a1 b0 b1 ha iha hb ihb b2.
elim /RPar.inv => //=.
elim /RPar.inv => //= _.
+ move => a2 a3 b3 b4 h0 h1 [*]. subst.
elim /EPar.inv : ha => //= _.
* move => a0 a4 h *. subst.
move /ihb : h1 {ihb}.
move => [c [hb1 hb4]].
have {}/iha : RPar.R (Abs a2) (Abs a3) by hauto lq:on ctrs:RPar.R.
move => [c0 [hc0 hc1]].
eexists.
split.
** apply RPar.AppAbs; eauto.
eauto using RPar.refl.
** simpl.
admit.
+ move => a2 a3 b3 b4 c0 c1 h0 h1 h2 [*]. subst.
admit.
+ hauto lq:on ctrs:RPar.R, EPar.R.
- hauto lq:on ctrs:RPar.R, EPar.R inv:RPar.R.
- move => n a b0 h0 ih0 b1.
elim /RPar.inv => //= _.
+ move => a0 a1 h [*]. subst.
admit.
+ move => a0 ? a1 h1 [*]. subst.
admit.
+ hauto lq:on ctrs:RPar.R, EPar.R.
- move => n a b0 h0 ih0 b1.
elim /RPar.inv => //= _.
+ move => a0 a1 ha [*]. subst.
admit.
+ move => a0 a1 b2 h [*]. subst.
admit.
+ hauto lq:on ctrs:RPar.R, EPar.R.
Admitted.
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.