Note: Changed the definition of extract!

This commit is contained in:
Yiyun Liu 2024-12-25 01:51:50 -05:00
parent 3cb40ccb9e
commit 3de6dae199

View file

@ -894,13 +894,36 @@ Local Ltac extract_tac := rewrite -?depth_subst_bool;hauto use:depth_subst_bool.
#[tactic="extract_tac"]Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt := #[tactic="extract_tac"]Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt :=
extract (Pi A B) := Pi A B; extract (Pi A B) := Pi A B;
extract (Abs a) := extract (subst_Tm (scons Bot VarTm) a); extract (Abs a) := subst_Tm (scons Bot VarTm) (extract a)
extract (App a b) := extract a; extract (App a b) := extract a;
extract (Pair a b) := extract a; extract (Pair a b) := extract a;
extract (Proj p a) := extract a; extract (Proj p a) := extract a;
extract Bot := Bot; extract Bot := Bot;
extract (VarTm _) := Bot. extract (VarTm _) := Bot.
(* Lemma extract_ren n m a (ξ : fin n -> fin m) : *)
(* extract (ren_Tm ξ a) = ren_Tm ξ (extract a). *)
(* Proof. *)
(* Lemma ren_extract' n m a b (ξ : fin n -> fin m) : *)
(* extract a = ren_Tm ξ b -> *)
(* exists a0, ren_Tm ξ a0 = a /\ extract a0 = b. *)
(* Proof. *)
(* move : n b ξ. *)
(* elim : m / a. *)
(* - move => n i m b ξ. simp extract. *)
(* case : b => //= _. *)
(* exists *)
Lemma ren_extract n m (a : Tm n) (ξ : fin n -> fin m) :
extract (ren_Tm ξ a) = ren_Tm ξ (extract a).
Proof.
move : m ξ. elim : n/a.
- sfirstorder.
- move => n a ih m ξ. simpl. simp extract.
(* Admitted. *)
Lemma tm_depth_ind (P : forall n, Tm n -> Prop) : Lemma tm_depth_ind (P : forall n, Tm n -> Prop) :
(forall n (a : Tm n), (forall m (b : Tm m), depth_tm b < depth_tm a -> P m b) -> P n a) -> forall n a, P n a. (forall n (a : Tm n), (forall m (b : Tm m), depth_tm b < depth_tm a -> P m b) -> P n a) -> forall n a, P n a.
move => ih. move => ih.