Minor
This commit is contained in:
parent
6eba80ed70
commit
2fe0d33592
1 changed files with 4 additions and 4 deletions
|
@ -15,7 +15,7 @@ Inductive InterpExt {n} i (I : forall n, nat -> Tm n -> Prop) : Tm n -> (Tm n ->
|
|||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
(forall a, PA a -> exists PB, PF a PB) ->
|
||||
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) ->
|
||||
⟦ Pi A B ⟧ i ;; I ↘ (ProdSpace PA PF)
|
||||
⟦ TBind TPi A B ⟧ i ;; I ↘ (ProdSpace PA PF)
|
||||
|
||||
| InterpExt_Univ j :
|
||||
j < i ->
|
||||
|
@ -86,19 +86,19 @@ Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n):
|
|||
Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed.
|
||||
|
||||
Lemma InterpExt_Fun_inv n i I (A : Tm n) B P
|
||||
(h : ⟦ Pi A B ⟧ i ;; I ↘ P) :
|
||||
(h : ⟦ TBind TPi A B ⟧ i ;; I ↘ P) :
|
||||
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
|
||||
⟦ A ⟧ i ;; I ↘ PA /\
|
||||
(forall a, PA a -> exists PB, PF a PB) /\
|
||||
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\
|
||||
P = ProdSpace PA PF.
|
||||
Proof.
|
||||
move E : (Pi A B) h => T h.
|
||||
move E : (TBind TPi A B) h => T h.
|
||||
move : A B E.
|
||||
elim : T P / h => //.
|
||||
- hauto l:on.
|
||||
- move => A A0 PA hA hA0 hPi A1 B ?. subst.
|
||||
elim /RPar.inv : hA => //= _ A2 A3 B0 B1 hA1 hB0 [*]. subst.
|
||||
elim /RPar.inv : hA => //= _ p A2 A3 B0 B1 hA1 hB0 [*]. subst.
|
||||
hauto lq:on ctrs:InterpExt use:RPar_substone.
|
||||
Qed.
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue