From 2de1e5fa74955b5fbad3afc0210796013cabc450 Mon Sep 17 00:00:00 2001 From: Yiyun Liu Date: Sun, 12 Jan 2025 23:49:31 -0500 Subject: [PATCH] Recover diamond property --- theories/fp_red.v | 49 +++++++++++++++++++++++++++++++++++++++++------ 1 file changed, 43 insertions(+), 6 deletions(-) diff --git a/theories/fp_red.v b/theories/fp_red.v index 6981c43..30b96ef 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -2409,6 +2409,36 @@ Lemma Univ_EPar' n i (u : Tm n) : - hauto l:on ctrs:OExp.R. Qed. +Lemma BVal_EPar' n i (u : Tm n) : + EPar.R (BVal i) u -> + rtc OExp.R (BVal i) u. + move E : (BVal i) => t h. + move : E. elim : n t u /h => //=. + - move => n a0 a1 h ih ?. subst. + specialize ih with (1 := eq_refl). + hauto lq:on ctrs:OExp.R use:rtc_r. + - move => n a0 a1 h ih ?. subst. + specialize ih with (1 := eq_refl). + hauto lq:on ctrs:OExp.R use:rtc_r. + - hauto l:on ctrs:OExp.R. +Qed. + +Lemma If_EPar' n (a b c u : Tm n) : + EPar.R (If a b c) u -> + (exists a0 b0 c0, EPar.R a a0 /\ EPar.R b b0 /\ EPar.R c c0 /\ rtc OExp.R (If a0 b0 c0) u). +Proof. + move E : (If a b c) => t h. + move : a b c E. elim : n t u /h => //= n. + - move => a0 a1 ha iha a b c ?. subst. + specialize iha with (1 := eq_refl). + hauto lq:on ctrs:OExp.R use:rtc_r. + - move => a0 a1 ha iha a b c ?. subst. + specialize iha with (1 := eq_refl). + hauto lq:on ctrs:OExp.R use:rtc_r. + - hauto l:on ctrs:OExp.R. +Qed. + + Lemma EPar_diamond n (c a1 b1 : Tm n) : EPar.R c a1 -> EPar.R c b1 -> @@ -2456,12 +2486,19 @@ Proof. move : OExp.commutativity0 h2; repeat move/[apply]. move => [d h]. exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - - qauto use:Bot_EPar', EPar.refl. - - qauto use:Univ_EPar', EPar.refl. - - admit. - - admit. - - admit. -Admitted. + - qauto use:EPar.refl. + - qauto use:EPar.refl. + - hauto lq:on use:EPar.refl. + - hauto lq:on use:EPar.refl. + - move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc u. + move /If_EPar' => [a2 [b2 [c2 [h0 [h1 [h2 h3]]]]]]. + have {}/iha := h0. have {}/ihb := h1. have {}/ihc := h2. + move => [c hc0]. move => [b hb0]. move => [a ha0]. + have : EPar.R (If a2 b2 c2) (If a b c) by hauto lq:on ctrs:EPar.R. + move : OExp.commutativity0 h3. repeat move/[apply]. + move => [d ?]. + exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. +Qed. (* Function tstar' {n} (a : Tm n) := *) (* match a with *)