Prove prov_extract
This commit is contained in:
parent
2050b08004
commit
213d3f1d58
1 changed files with 47 additions and 4 deletions
|
@ -856,6 +856,53 @@ Local Ltac prov_tac := sfirstorder use:depth_ren.
|
|||
prov A B Bot := False;
|
||||
prov A B (VarTm _) := False.
|
||||
|
||||
Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt :=
|
||||
extract (Pi A B) := Pi A B;
|
||||
extract (Abs a) := extract (subst_Tm (scons Bot VarTm) a);
|
||||
extract (App a b) := extract a;
|
||||
extract (Pair a b) := extract a;
|
||||
extract (Proj p a) := extract a;
|
||||
extract Bot := Bot;
|
||||
extract (VarTm _) := Bot.
|
||||
Next Obligation.
|
||||
Admitted.
|
||||
|
||||
Next Obligation.
|
||||
sfirstorder.
|
||||
Qed.
|
||||
|
||||
Next Obligation.
|
||||
sfirstorder.
|
||||
Qed.
|
||||
|
||||
Lemma prov_extract n A B (a : Tm n) :
|
||||
prov A B a -> exists A0 B0,
|
||||
extract a = Pi A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0.
|
||||
Proof.
|
||||
move : A B. elim : n / a => //=.
|
||||
- move => n a ih A B.
|
||||
simp prov.
|
||||
move /ih.
|
||||
simp extract.
|
||||
move => [A0][B0][h0][h1]h2.
|
||||
(* anti renaming for par *)
|
||||
have : exists A1, rtc Par.R A A1 /\ ren_Tm shift A1 = A0 by admit.
|
||||
move => [A1 [h3 h4]].
|
||||
have : exists B1, rtc Par.R B B1 /\ ren_Tm (upRen_Tm_Tm shift) B1 = B0
|
||||
by admit.
|
||||
move => [B1 [h5 h6]].
|
||||
subst.
|
||||
have {}h0 : extract a = ren_Tm shift (Pi A1 B1) by done.
|
||||
have : exists a1, extract a1 = Pi A1 B1 /\ ren_Tm shift a1 = a by admit.
|
||||
move => [a1 [h6 ?]]. subst.
|
||||
asimpl. exists A1, B1.
|
||||
repeat split => //=.
|
||||
- hauto l:on rew:db:prov, extract.
|
||||
- hauto l:on rew:db:prov, extract.
|
||||
- hauto l:on rew:db:prov, extract.
|
||||
- qauto l:on rew:db:prov, extract.
|
||||
Admitted.
|
||||
|
||||
Lemma tm_depth_ind (P : forall n, Tm n -> Prop) :
|
||||
(forall n (a : Tm n), (forall m (b : Tm m), depth_tm b < depth_tm a -> P m b) -> P n a) -> forall n a, P n a.
|
||||
move => ih.
|
||||
|
@ -870,10 +917,6 @@ Lemma tm_depth_ind (P : forall n, Tm n -> Prop) :
|
|||
lia.
|
||||
Qed.
|
||||
|
||||
(* forall P : tm -> Prop, *)
|
||||
(* (forall x : tm, (forall y : tm, size_tm y < size_tm x -> P y) -> P x) -> *)
|
||||
(* forall a : tm, P a. *)
|
||||
|
||||
Lemma prov_ren n m (ξ : fin n -> fin m) A B a :
|
||||
prov A B a -> prov (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a).
|
||||
Proof.
|
||||
|
|
Loading…
Add table
Reference in a new issue