Finish (most of) prov_par

This commit is contained in:
Yiyun Liu 2024-12-25 00:16:26 -05:00
parent 2478c0f2e1
commit 2050b08004

View file

@ -59,8 +59,55 @@ Module Par.
R (Pi A0 B0) (Pi A1 B1) R (Pi A0 B0) (Pi A1 B1)
| BotCong : | BotCong :
R Bot Bot. R Bot Bot.
Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) :
t = subst_Tm (scons b1 VarTm) a1 ->
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) t.
Proof. move => ->. apply AppAbs. Qed.
Lemma ProjPair' n p (a0 a1 b0 b1 : Tm n) t :
t = (if p is PL then a1 else b1) ->
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) t.
Proof. move => > ->. apply ProjPair. Qed.
Lemma AppEta' n (a0 a1 b : Tm n) :
b = (Abs (App (ren_Tm shift a1) (VarTm var_zero))) ->
R a0 a1 ->
R a0 b.
Proof. move => ->; apply AppEta. Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h.
move => *; apply : AppAbs'; eauto; by asimpl.
all : match goal with
| [ |- context[var_zero]] => move => *; apply : AppEta'; eauto; by asimpl
| _ => qauto ctrs:R use:ProjPair'
end.
Qed.
End Par. End Par.
Module Pars.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
rtc Par.R a b -> rtc Par.R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
induction 1; hauto lq:on ctrs:rtc use:Par.renaming.
Qed.
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
rtc Par.R a b ->
rtc Par.R (subst_Tm ρ a) (subst_Tm ρ b).
Admitted.
End Pars.
(***************** Beta rules only ***********************) (***************** Beta rules only ***********************)
Module RPar. Module RPar.
Inductive R {n} : Tm n -> Tm n -> Prop := Inductive R {n} : Tm n -> Tm n -> Prop :=
@ -831,7 +878,7 @@ Lemma prov_ren n m (ξ : fin n -> fin m) A B a :
prov A B a -> prov (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a). prov A B a -> prov (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a).
Proof. Proof.
move : m ξ A B. elim : n / a. move : m ξ A B. elim : n / a.
- sfirstorder. - sfirstorder rew:db:prov.
- move => n a ih m ξ A B. - move => n a ih m ξ A B.
simp prov. simpl. simp prov. simpl.
move /ih => {ih}. move /ih => {ih}.
@ -842,19 +889,45 @@ Proof.
- hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov.
- move => n A0 ih B0 h0 m ξ A B. simpl. - move => n A0 ih B0 h0 m ξ A B. simpl.
simp prov. simp prov.
admit. hauto l:on use:Pars.renaming.
- sfirstorder. - sfirstorder.
Admitted. Qed.
Lemma prov_morph n m (ρ : fin n -> Tm m) A B a :
prov A B a ->
prov (subst_Tm ρ A) (subst_Tm (up_Tm_Tm ρ) B) (subst_Tm ρ a).
Proof.
move : m ρ A B. elim : n / a.
- hauto q:on rew:db:prov.
- move => n a ih m ρ A B.
simp prov => /=.
move /ih => {ih}.
move /(_ _ (up_Tm_Tm ρ)). asimpl.
simp prov. by asimpl.
- hauto q:on rew:db:prov.
- hauto q:on rew:db:prov.
- hauto lq:on rew:db:prov.
- hauto l:on use:Pars.substing rew:db:prov.
- qauto rew:db:prov.
Qed.
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b. Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
Proof. Proof.
move => h. elim : n a b /h; qauto ctrs:Par.R. move => h. elim : n a b /h; qauto ctrs:Par.R.
Qed. Qed.
Lemma prov_par n (A : Tm n) B a b : prov A B a -> EPar.R a b -> prov A B b. Lemma prov_par n (A : Tm n) B a b : prov A B a -> Par.R a b -> prov A B b.
Proof. Proof.
move => + h. move : A B. move => + h. move : A B.
elim : n a b /h. elim : n a b /h.
- move => n a0 a1 b0 b1 ha iha hb ihb A B /=.
simp prov => h.
have : prov (ren_Tm shift A) (ren_Tm (upRen_Tm_Tm shift) B) a1 by admit.
move /(prov_morph _ _ (scons b1 VarTm)).
by asimpl.
- hauto lq:on rew:db:prov.
- hauto lq:on rew:db:prov.
- hauto lq:on rew:db:prov.
- move => n a0 a1 ha iha A B. simp prov. move /iha. - move => n a0 a1 ha iha A B. simp prov. move /iha.
hauto l:on use:prov_ren. hauto l:on use:prov_ren.
- hauto l:on rew:db:prov. - hauto l:on rew:db:prov.
@ -865,11 +938,9 @@ Proof.
- hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov.
- move => n A0 A1 B0 B1 hA ihA hB ihB A B. simp prov. - move => n A0 A1 B0 B1 hA ihA hB ihB A B. simp prov.
move => [hA0 hA1]. move => [hA0 hA1].
apply EPar_Par in hA, hB.
eauto using rtc_r. eauto using rtc_r.
- sfirstorder. - sfirstorder.
Qed. Admitted.
Lemma Par_confluent n (c a1 b1 : Tm n) : Lemma Par_confluent n (c a1 b1 : Tm n) :
rtc Par.R c a1 -> rtc Par.R c a1 ->