Add new syntax for booleans

This commit is contained in:
Yiyun Liu 2025-01-20 20:42:40 -05:00
parent d9d96d2c8b
commit 1f7460fd11
3 changed files with 95 additions and 2 deletions

View file

@ -2,6 +2,7 @@ nat : Type
Tm(VarTm) : Type Tm(VarTm) : Type
PTag : Type PTag : Type
TTag : Type TTag : Type
bool : Type
PL : PTag PL : PTag
PR : PTag PR : PTag
@ -15,3 +16,6 @@ TBind : TTag -> Tm -> (bind Tm in Tm) -> Tm
Const : TTag -> Tm Const : TTag -> Tm
Univ : nat -> Tm Univ : nat -> Tm
Bot : Tm Bot : Tm
BVal : bool -> Tm
Bool : Tm
If : Tm -> Tm -> Tm -> Tm

View file

@ -42,7 +42,10 @@ Inductive Tm (n_Tm : nat) : Type :=
| TBind : TTag -> Tm n_Tm -> Tm (S n_Tm) -> Tm n_Tm | TBind : TTag -> Tm n_Tm -> Tm (S n_Tm) -> Tm n_Tm
| Const : TTag -> Tm n_Tm | Const : TTag -> Tm n_Tm
| Univ : nat -> Tm n_Tm | Univ : nat -> Tm n_Tm
| Bot : Tm n_Tm. | Bot : Tm n_Tm
| BVal : bool -> Tm n_Tm
| Bool : Tm n_Tm
| If : Tm n_Tm -> Tm n_Tm -> Tm n_Tm -> Tm n_Tm.
Lemma congr_Abs {m_Tm : nat} {s0 : Tm (S m_Tm)} {t0 : Tm (S m_Tm)} Lemma congr_Abs {m_Tm : nat} {s0 : Tm (S m_Tm)} {t0 : Tm (S m_Tm)}
(H0 : s0 = t0) : Abs m_Tm s0 = Abs m_Tm t0. (H0 : s0 = t0) : Abs m_Tm s0 = Abs m_Tm t0.
@ -101,6 +104,27 @@ Proof.
exact (eq_refl). exact (eq_refl).
Qed. Qed.
Lemma congr_BVal {m_Tm : nat} {s0 : bool} {t0 : bool} (H0 : s0 = t0) :
BVal m_Tm s0 = BVal m_Tm t0.
Proof.
exact (eq_trans eq_refl (ap (fun x => BVal m_Tm x) H0)).
Qed.
Lemma congr_Bool {m_Tm : nat} : Bool m_Tm = Bool m_Tm.
Proof.
exact (eq_refl).
Qed.
Lemma congr_If {m_Tm : nat} {s0 : Tm m_Tm} {s1 : Tm m_Tm} {s2 : Tm m_Tm}
{t0 : Tm m_Tm} {t1 : Tm m_Tm} {t2 : Tm m_Tm} (H0 : s0 = t0) (H1 : s1 = t1)
(H2 : s2 = t2) : If m_Tm s0 s1 s2 = If m_Tm t0 t1 t2.
Proof.
exact (eq_trans
(eq_trans (eq_trans eq_refl (ap (fun x => If m_Tm x s1 s2) H0))
(ap (fun x => If m_Tm t0 x s2) H1))
(ap (fun x => If m_Tm t0 t1 x) H2)).
Qed.
Lemma upRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) : Lemma upRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) :
fin (S m) -> fin (S n). fin (S m) -> fin (S n).
Proof. Proof.
@ -126,6 +150,10 @@ Fixpoint ren_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
| Const _ s0 => Const n_Tm s0 | Const _ s0 => Const n_Tm s0
| Univ _ s0 => Univ n_Tm s0 | Univ _ s0 => Univ n_Tm s0
| Bot _ => Bot n_Tm | Bot _ => Bot n_Tm
| BVal _ s0 => BVal n_Tm s0
| Bool _ => Bool n_Tm
| If _ s0 s1 s2 =>
If n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1) (ren_Tm xi_Tm s2)
end. end.
Lemma up_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) : Lemma up_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) :
@ -154,6 +182,11 @@ Fixpoint subst_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
| Const _ s0 => Const n_Tm s0 | Const _ s0 => Const n_Tm s0
| Univ _ s0 => Univ n_Tm s0 | Univ _ s0 => Univ n_Tm s0
| Bot _ => Bot n_Tm | Bot _ => Bot n_Tm
| BVal _ s0 => BVal n_Tm s0
| Bool _ => Bool n_Tm
| If _ s0 s1 s2 =>
If n_Tm (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1)
(subst_Tm sigma_Tm s2)
end. end.
Lemma upId_Tm_Tm {m_Tm : nat} (sigma : fin m_Tm -> Tm m_Tm) Lemma upId_Tm_Tm {m_Tm : nat} (sigma : fin m_Tm -> Tm m_Tm)
@ -195,6 +228,11 @@ subst_Tm sigma_Tm s = s :=
| Const _ s0 => congr_Const (eq_refl s0) | Const _ s0 => congr_Const (eq_refl s0)
| Univ _ s0 => congr_Univ (eq_refl s0) | Univ _ s0 => congr_Univ (eq_refl s0)
| Bot _ => congr_Bot | Bot _ => congr_Bot
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (idSubst_Tm sigma_Tm Eq_Tm s0) (idSubst_Tm sigma_Tm Eq_Tm s1)
(idSubst_Tm sigma_Tm Eq_Tm s2)
end. end.
Lemma upExtRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) Lemma upExtRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n)
@ -240,6 +278,11 @@ Fixpoint extRen_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
| Const _ s0 => congr_Const (eq_refl s0) | Const _ s0 => congr_Const (eq_refl s0)
| Univ _ s0 => congr_Univ (eq_refl s0) | Univ _ s0 => congr_Univ (eq_refl s0)
| Bot _ => congr_Bot | Bot _ => congr_Bot
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0)
(extRen_Tm xi_Tm zeta_Tm Eq_Tm s1) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s2)
end. end.
Lemma upExt_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) Lemma upExt_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm)
@ -286,6 +329,11 @@ Fixpoint ext_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
| Const _ s0 => congr_Const (eq_refl s0) | Const _ s0 => congr_Const (eq_refl s0)
| Univ _ s0 => congr_Univ (eq_refl s0) | Univ _ s0 => congr_Univ (eq_refl s0)
| Bot _ => congr_Bot | Bot _ => congr_Bot
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (ext_Tm sigma_Tm tau_Tm Eq_Tm s0)
(ext_Tm sigma_Tm tau_Tm Eq_Tm s1) (ext_Tm sigma_Tm tau_Tm Eq_Tm s2)
end. end.
Lemma up_ren_ren_Tm_Tm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l) Lemma up_ren_ren_Tm_Tm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l)
@ -332,6 +380,12 @@ Fixpoint compRenRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
| Const _ s0 => congr_Const (eq_refl s0) | Const _ s0 => congr_Const (eq_refl s0)
| Univ _ s0 => congr_Univ (eq_refl s0) | Univ _ s0 => congr_Univ (eq_refl s0)
| Bot _ => congr_Bot | Bot _ => congr_Bot
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0)
(compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1)
(compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s2)
end. end.
Lemma up_ren_subst_Tm_Tm {k : nat} {l : nat} {m_Tm : nat} Lemma up_ren_subst_Tm_Tm {k : nat} {l : nat} {m_Tm : nat}
@ -389,6 +443,12 @@ Fixpoint compRenSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
| Const _ s0 => congr_Const (eq_refl s0) | Const _ s0 => congr_Const (eq_refl s0)
| Univ _ s0 => congr_Univ (eq_refl s0) | Univ _ s0 => congr_Univ (eq_refl s0)
| Bot _ => congr_Bot | Bot _ => congr_Bot
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0)
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1)
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s2)
end. end.
Lemma up_subst_ren_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat} Lemma up_subst_ren_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
@ -467,6 +527,12 @@ ren_Tm zeta_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
| Const _ s0 => congr_Const (eq_refl s0) | Const _ s0 => congr_Const (eq_refl s0)
| Univ _ s0 => congr_Univ (eq_refl s0) | Univ _ s0 => congr_Univ (eq_refl s0)
| Bot _ => congr_Bot | Bot _ => congr_Bot
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0)
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1)
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s2)
end. end.
Lemma up_subst_subst_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat} Lemma up_subst_subst_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
@ -546,6 +612,12 @@ subst_Tm tau_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
| Const _ s0 => congr_Const (eq_refl s0) | Const _ s0 => congr_Const (eq_refl s0)
| Univ _ s0 => congr_Univ (eq_refl s0) | Univ _ s0 => congr_Univ (eq_refl s0)
| Bot _ => congr_Bot | Bot _ => congr_Bot
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0)
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1)
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s2)
end. end.
Lemma renRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat} Lemma renRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
@ -663,6 +735,12 @@ Fixpoint rinst_inst_Tm {m_Tm : nat} {n_Tm : nat}
| Const _ s0 => congr_Const (eq_refl s0) | Const _ s0 => congr_Const (eq_refl s0)
| Univ _ s0 => congr_Univ (eq_refl s0) | Univ _ s0 => congr_Univ (eq_refl s0)
| Bot _ => congr_Bot | Bot _ => congr_Bot
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0)
(rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1)
(rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s2)
end. end.
Lemma rinstInst'_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm) Lemma rinstInst'_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
@ -861,6 +939,12 @@ Core.
Arguments VarTm {n_Tm}. Arguments VarTm {n_Tm}.
Arguments If {n_Tm}.
Arguments Bool {n_Tm}.
Arguments BVal {n_Tm}.
Arguments Bot {n_Tm}. Arguments Bot {n_Tm}.
Arguments Univ {n_Tm}. Arguments Univ {n_Tm}.

View file

@ -15,11 +15,14 @@ Module Compile.
| Pair a b => Pair (F a) (F b) | Pair a b => Pair (F a) (F b)
| Proj t a => Proj t (F a) | Proj t a => Proj t (F a)
| Bot => Bot | Bot => Bot
| If a b c => App (App (F a) (F b)) (F c)
| BVal b => if b then (Abs (Abs (VarTm (shift var_zero)))) else (Abs (Abs (VarTm var_zero)))
| Bool => Bool
end. end.
Lemma renaming n m (a : Tm n) (ξ : fin n -> fin m) : Lemma renaming n m (a : Tm n) (ξ : fin n -> fin m) :
F (ren_Tm ξ a)= ren_Tm ξ (F a). F (ren_Tm ξ a)= ren_Tm ξ (F a).
Proof. move : m ξ. elim : n / a => //=; scongruence. Qed. Proof. move : m ξ. elim : n / a => //=; hauto lq:on. Qed.
#[local]Hint Rewrite Compile.renaming : compile. #[local]Hint Rewrite Compile.renaming : compile.
@ -33,6 +36,8 @@ Module Compile.
- hauto lq:on rew:off. - hauto lq:on rew:off.
- hauto lq:on. - hauto lq:on.
- hauto lq:on inv:option rew:db:compile unfold:funcomp. - hauto lq:on inv:option rew:db:compile unfold:funcomp.
- hauto lq:on rew:off.
- hauto lq:on rew:off.
Qed. Qed.
Lemma substing n b (a : Tm (S n)) : Lemma substing n b (a : Tm (S n)) :