Start refactoring the logrel to include only closed terms

This commit is contained in:
Yiyun Liu 2024-12-30 20:46:43 -05:00
parent dd63ebf2e9
commit 1a9cd6bda9

View file

@ -287,3 +287,115 @@ Proof.
have /join_symmetric {}h : join A A0 by hauto lq:on ctrs:rtc use:RPar_Par, relations.rtc_once.
eauto using join_transitive.
Qed.
Lemma InterpUniv_Bind_inv n p i (A : Tm n) B P
(h : TBind p A B i P) :
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
A i PA /\
(forall a, PA a -> exists PB, PF a PB) /\
(forall a PB, PF a PB -> subst_Tm (scons a VarTm) B i PB) /\
P = BindSpace p PA PF.
Proof. hauto l:on use:InterpExt_Bind_inv rew:db:InterpUniv. Qed.
Lemma InterpUniv_Univ_inv n i j P
(h : @Univ n j i P) :
P = (fun (A : Tm n) => exists PA, A j PA) /\ j < i.
Proof. hauto l:on use:InterpExt_Univ_inv rew:db:InterpUniv. Qed.
Lemma InterpExt_Functional n i I (A B : Tm n) PA PB :
A i ;; I PA ->
A i ;; I PB ->
PA = PB.
Proof. hauto use:InterpExt_Join, join_refl. Qed.
Lemma InterpUniv_Functional n i (A B : Tm n) PA PB :
A i PA ->
A i PB ->
PA = PB.
Proof. hauto use:InterpExt_Functional rew:db:InterpUniv. Qed.
Lemma InterpExt_Bind_inv_nopf n i I p A B P (h : TBind p A B i ;; I P) :
exists (PA : Tm n -> Prop),
A i ;; I PA /\
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i ;; I PB) /\
P = BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i ;; I PB).
Proof.
move /InterpExt_Bind_inv : h. intros (PA & PF & hPA & hPF & hPF' & ?); subst.
exists PA. repeat split => //.
- sfirstorder.
- extensionality b.
case : p => /=.
+ extensionality a.
extensionality PB.
extensionality ha.
apply propositional_extensionality.
split.
* hecrush use:InterpExt_Functional.
* sfirstorder.
+ rewrite /SumSpace. apply propositional_extensionality.
split; hauto q:on use:InterpExt_Functional.
Qed.
Lemma InterpUniv_Bind_inv_nopf n i p A B P (h : TBind p A B i P) :
exists (PA : Tm n -> Prop),
A i PA /\
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i PB) /\
P = BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i PB).
Proof. hauto l:on use:InterpExt_Bind_inv_nopf rew:db:InterpUniv. Qed.
Lemma InterpExt_back_clos n i I (A : Tm n) PA :
(forall j, forall a b, (RPar.R a b) -> I n j b -> I n j a) ->
A i ;; I PA ->
forall a b, (RPar.R a b) ->
PA b -> PA a.
Proof.
move => hI h.
elim : A PA /h.
- move => p A B PA PF hPA ihPA hTot hRes ihPF a b hr.
case : p => //=.
+ have : forall b0 b1 a, RPar.R b0 b1 -> RPar.R (App b0 a) (App b1 a)
by hauto lq:on ctrs:RPar.R use:RPar.refl.
hauto lq:on rew:off unfold:ProdSpace.
+ hauto lq:on ctrs:rtc unfold:SumSpace.
- eauto.
- eauto.
Qed.
Lemma InterpUniv_back_clos n i (A : Tm n) PA :
A i PA ->
forall a b, (RPar.R a b) ->
PA b -> PA a.
Proof.
simp InterpUniv.
apply InterpExt_back_clos.
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
Qed.
Lemma InterpUniv_back_clos_star n i (A : Tm n) PA :
A i PA ->
forall a b, rtc RPar.R a b ->
PA b -> PA a.
Proof.
move => h a b.
induction 1=> //.
hauto lq:on use:InterpUniv_back_clos.
Qed.
Definition ρ_ok {n} Γ (ρ : fin n -> Tm n) := forall i m PA,
Γ i m PA -> PA (ρ i).
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> forall (i : fin n), exists m PA, subst_Tm ρ (Γ i) m PA.
Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70).
(* Semantic context wellformedness *)
Definition SemWff {n} Γ := forall (i : fin n), exists j, Γ Γ i Univ j.
Notation "⊨ Γ" := (SemWff Γ) (at level 70).
Lemma ρ_ok_nil ρ :
ρ_ok null ρ.
Proof. rewrite /ρ_ok. inversion i; subst. Qed.
Lemma ρ_ok_cons n i (Γ : fin n -> Tm n) ρ a PA A :
subst_Tm ρ A i PA -> PA a ->
ρ_ok Γ ρ ->
ρ_ok (funcomp (ren_Tm shift) (scons A Γ)) (funcomp (ren_Tm shift) (scons a ρ)).