This commit is contained in:
Yiyun Liu 2025-01-04 01:31:02 -05:00
parent f699ce2d4f
commit 162db5296f

View file

@ -1132,6 +1132,31 @@ Qed.
Lemma prov_antiren n m (ξ : fin n -> fin m) h a:
prov (ren_Tm ξ h) a -> exists a', ren_Tm ξ a' = a /\ prov h a'.
Proof.
move E : (ren_Tm ξ h) => H.
move : ξ H E.
elim : m / a => m.
- move => i ξ H ?. subst. simp prov.
case : h => //=.
move => j [?]. subst.
exists (VarTm j). firstorder.
- move => a iha ξ ? ?. subst.
simp prov.
asimpl.
move => {}/iha iha.
specialize iha with (1 := eq_refl).
move : iha => [a' [h1 h2]]. subst.
exists (Abs (ren_Tm shift a')).
split. by asimpl.
simp prov. hauto lq:on use:prov_ren.
- move => a iha b ihb ξ ? ?. subst.
simp prov.
move /iha. move/(_ ξ eq_refl) => [a' [? ?]] {iha ihb}. subst.
(* Doesn't hold *)
have : exists b', ren_Tm ξ b' = b by admit.
move => [b' ?]. subst.
exists (App a' b').
split => //=.
simp prov.
Admitted.
(* Lemma ren_hfb {n m} (ξ : fin n -> fin m) u : hfb (ren_Tm ξ u) = hfb u. *)