Stuck
This commit is contained in:
parent
f699ce2d4f
commit
162db5296f
1 changed files with 25 additions and 0 deletions
|
@ -1132,6 +1132,31 @@ Qed.
|
|||
Lemma prov_antiren n m (ξ : fin n -> fin m) h a:
|
||||
prov (ren_Tm ξ h) a -> exists a', ren_Tm ξ a' = a /\ prov h a'.
|
||||
Proof.
|
||||
move E : (ren_Tm ξ h) => H.
|
||||
move : ξ H E.
|
||||
elim : m / a => m.
|
||||
- move => i ξ H ?. subst. simp prov.
|
||||
case : h => //=.
|
||||
move => j [?]. subst.
|
||||
exists (VarTm j). firstorder.
|
||||
- move => a iha ξ ? ?. subst.
|
||||
simp prov.
|
||||
asimpl.
|
||||
move => {}/iha iha.
|
||||
specialize iha with (1 := eq_refl).
|
||||
move : iha => [a' [h1 h2]]. subst.
|
||||
exists (Abs (ren_Tm shift a')).
|
||||
split. by asimpl.
|
||||
simp prov. hauto lq:on use:prov_ren.
|
||||
- move => a iha b ihb ξ ? ?. subst.
|
||||
simp prov.
|
||||
move /iha. move/(_ ξ eq_refl) => [a' [? ?]] {iha ihb}. subst.
|
||||
(* Doesn't hold *)
|
||||
have : exists b', ren_Tm ξ b' = b by admit.
|
||||
move => [b' ?]. subst.
|
||||
exists (App a' b').
|
||||
split => //=.
|
||||
simp prov.
|
||||
Admitted.
|
||||
|
||||
(* Lemma ren_hfb {n m} (ξ : fin n -> fin m) u : hfb (ren_Tm ξ u) = hfb u. *)
|
||||
|
|
Loading…
Add table
Reference in a new issue