Initial commit
This commit is contained in:
commit
145e316a4b
7 changed files with 1452 additions and 0 deletions
63
.gitignore
vendored
Normal file
63
.gitignore
vendored
Normal file
|
@ -0,0 +1,63 @@
|
|||
.*.aux
|
||||
.*.d
|
||||
*.a
|
||||
*.cma
|
||||
*.cmi
|
||||
*.cmo
|
||||
*.cmx
|
||||
*.cmxa
|
||||
*.cmxs
|
||||
*.glob
|
||||
*.ml.d
|
||||
*.ml4.d
|
||||
*.mlg.d
|
||||
*.mli.d
|
||||
*.mllib.d
|
||||
*.mlpack.d
|
||||
*.native
|
||||
*.o
|
||||
*.v.d
|
||||
*.vio
|
||||
*.vo
|
||||
*.vok
|
||||
*.vos
|
||||
.coq-native
|
||||
.csdp.cache
|
||||
.lia.cache
|
||||
.nia.cache
|
||||
.nlia.cache
|
||||
.nra.cache
|
||||
csdp.cache
|
||||
lia.cache
|
||||
nia.cache
|
||||
nlia.cache
|
||||
nra.cache
|
||||
native_compute_profile_*.data
|
||||
|
||||
# generated timing files
|
||||
*.timing.diff
|
||||
*.v.after-timing
|
||||
*.v.before-timing
|
||||
*.v.timing
|
||||
time-of-build-after.log
|
||||
time-of-build-before.log
|
||||
time-of-build-both.log
|
||||
time-of-build-pretty.log
|
||||
|
||||
# generated coq files
|
||||
|
||||
# emacs temporary files
|
||||
*~
|
||||
|
||||
*.aux
|
||||
*.bbl
|
||||
*.blg
|
||||
*.out
|
||||
*.log
|
||||
paper/paper-output.tex
|
||||
paper/rules.tex
|
||||
paper/paper-output.pdf
|
||||
proofs
|
||||
proofs.zip
|
||||
CoqMakefile
|
||||
CoqMakefile.conf
|
27
Makefile
Normal file
27
Makefile
Normal file
|
@ -0,0 +1,27 @@
|
|||
COQMAKEFILE=CoqMakefile
|
||||
|
||||
theories: $(COQMAKEFILE) FORCE
|
||||
$(MAKE) -f $(COQMAKEFILE)
|
||||
|
||||
validate: $(COQMAKEFILE) FORCE
|
||||
$(MAKE) -f $(COQMAKEFILE) validate
|
||||
|
||||
$(COQMAKEFILE) : theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v
|
||||
$(COQBIN)coq_makefile -f _CoqProject -o $(COQMAKEFILE)
|
||||
|
||||
install: $(COQMAKEFILE)
|
||||
$(MAKE) -f $^ install
|
||||
|
||||
uninstall: $(COQMAKEFILE)
|
||||
$(MAKE) -f $(COQMAKEFILE) uninstall
|
||||
|
||||
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v : syntax.sig
|
||||
autosubst -f -v ge813 -s coq -o theories/Autosubst2/syntax.v syntax.sig
|
||||
|
||||
.PHONY: clean FORCE
|
||||
|
||||
clean:
|
||||
test ! -f $(COQMAKEFILE) || ( $(MAKE) -f $(COQMAKEFILE) clean && rm $(COQMAKEFILE) )
|
||||
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v
|
||||
|
||||
FORCE:
|
2
_CoqProject
Normal file
2
_CoqProject
Normal file
|
@ -0,0 +1,2 @@
|
|||
-R theories ImpredIrrel
|
||||
theories
|
8
syntax.sig
Normal file
8
syntax.sig
Normal file
|
@ -0,0 +1,8 @@
|
|||
Tm(VarTm) : Type
|
||||
-- nat : Type
|
||||
|
||||
Abs : (bind Tm in Tm) -> Tm
|
||||
App : Tm -> Tm -> Tm
|
||||
Pair : Tm -> Tm -> Tm
|
||||
Proj1 : Tm -> Tm
|
||||
Proj2 : Tm -> Tm
|
159
theories/Autosubst2/core.v
Normal file
159
theories/Autosubst2/core.v
Normal file
|
@ -0,0 +1,159 @@
|
|||
(* Function composition *)
|
||||
|
||||
Definition funcomp {X Y Z} (g : Y -> Z) (f : X -> Y) :=
|
||||
fun x => g (f x).
|
||||
|
||||
Lemma funcomp_assoc {W X Y Z} (g: Y -> Z) (f: X -> Y) (h: W -> X) :
|
||||
funcomp g (funcomp f h) = (funcomp (funcomp g f) h).
|
||||
Proof.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
(** ** Functor Instances
|
||||
|
||||
Exemplary functor instances needed to make Autosubst's generation possible for functors.
|
||||
Two things are important:
|
||||
1. The names are fixed.
|
||||
2. For Coq to check termination, also the proofs have to be closed with Defined.
|
||||
*)
|
||||
|
||||
(** *** List Instance *)
|
||||
Require Import List.
|
||||
|
||||
Notation "'list_map'" := map.
|
||||
|
||||
Definition list_ext {A B} {f g : A -> B} :
|
||||
(forall x, f x = g x) -> forall xs, list_map f xs = list_map g xs.
|
||||
intros H. induction xs. reflexivity.
|
||||
cbn. f_equal. apply H. apply IHxs.
|
||||
Defined.
|
||||
|
||||
Definition list_id {A} { f : A -> A} :
|
||||
(forall x, f x = x) -> forall xs, list_map f xs = xs.
|
||||
Proof.
|
||||
intros H. induction xs. reflexivity.
|
||||
cbn. rewrite H. rewrite IHxs; eauto.
|
||||
Defined.
|
||||
|
||||
Definition list_comp {A B C} {f: A -> B} {g: B -> C} {h} :
|
||||
(forall x, (funcomp g f) x = h x) -> forall xs, map g (map f xs) = map h xs.
|
||||
Proof.
|
||||
induction xs. reflexivity.
|
||||
cbn. rewrite <- H. f_equal. apply IHxs.
|
||||
Defined.
|
||||
|
||||
(** *** Prod Instance *)
|
||||
|
||||
Definition prod_map {A B C D} (f : A -> C) (g : B -> D) (p : A * B) :
|
||||
C * D.
|
||||
Proof.
|
||||
destruct p as [a b]. split.
|
||||
exact (f a). exact (g b).
|
||||
Defined.
|
||||
|
||||
Definition prod_id {A B} {f : A -> A} {g : B -> B} :
|
||||
(forall x, f x = x) -> (forall x, g x = x) -> forall p, prod_map f g p = p.
|
||||
Proof.
|
||||
intros H0 H1. destruct p. cbn. f_equal; [ apply H0 | apply H1 ].
|
||||
Defined.
|
||||
|
||||
Definition prod_ext {A B C D} {f f' : A -> C} {g g': B -> D} :
|
||||
(forall x, f x = f' x) -> (forall x, g x = g' x) -> forall p, prod_map f g p = prod_map f' g' p.
|
||||
Proof.
|
||||
intros H0 H1. destruct p as [a b]. cbn. f_equal; [ apply H0 | apply H1 ].
|
||||
Defined.
|
||||
|
||||
Definition prod_comp {A B C D E F} {f1 : A -> C} {g1 : C -> E} {h1 : A -> E} {f2: B -> D} {g2: D -> F} {h2 : B -> F}:
|
||||
(forall x, (funcomp g1 f1) x = h1 x) -> (forall x, (funcomp g2 f2) x = h2 x) -> forall p, prod_map g1 g2 (prod_map f1 f2 p) = prod_map h1 h2 p.
|
||||
Proof.
|
||||
intros H0 H1. destruct p as [a b]. cbn. f_equal; [ apply H0 | apply H1 ].
|
||||
Defined.
|
||||
|
||||
(** *** Option Instance *)
|
||||
|
||||
Definition option_map {A B} (f : A -> B) (p : option A) :
|
||||
option B :=
|
||||
match p with
|
||||
| Some a => Some (f a)
|
||||
| None => None
|
||||
end.
|
||||
|
||||
Definition option_id {A} {f : A -> A} :
|
||||
(forall x, f x = x) -> forall p, option_map f p = p.
|
||||
Proof.
|
||||
intros H. destruct p ; cbn.
|
||||
- f_equal. apply H.
|
||||
- reflexivity.
|
||||
Defined.
|
||||
|
||||
Definition option_ext {A B} {f f' : A -> B} :
|
||||
(forall x, f x = f' x) -> forall p, option_map f p = option_map f' p.
|
||||
Proof.
|
||||
intros H. destruct p as [a|] ; cbn.
|
||||
- f_equal. apply H.
|
||||
- reflexivity.
|
||||
Defined.
|
||||
|
||||
Definition option_comp {A B C} {f : A -> B} {g : B -> C} {h : A -> C}:
|
||||
(forall x, (funcomp g f) x = h x) ->
|
||||
forall p, option_map g (option_map f p) = option_map h p.
|
||||
Proof.
|
||||
intros H. destruct p as [a|]; cbn.
|
||||
- f_equal. apply H.
|
||||
- reflexivity.
|
||||
Defined.
|
||||
|
||||
#[export] Hint Rewrite in_map_iff : FunctorInstances.
|
||||
|
||||
(* Declaring the scopes that all our notations will live in *)
|
||||
Declare Scope fscope.
|
||||
Declare Scope subst_scope.
|
||||
|
||||
Ltac eta_reduce :=
|
||||
repeat match goal with
|
||||
| [|- context[fun x => ?f x]] => change (fun x => f x) with f (* eta reduction *)
|
||||
end.
|
||||
|
||||
Ltac minimize :=
|
||||
repeat match goal with
|
||||
| [|- context[fun x => ?f x]] => change (fun x => f x) with f (* eta reduction *)
|
||||
| [|- context[fun x => ?g (?f x)]] => change (fun x => g (f x)) with (funcomp g f) (* funcomp folding *)
|
||||
end.
|
||||
|
||||
(* had to add this tactic abbreviation because I could not print a setoid_rewrite with the arrow *)
|
||||
Ltac setoid_rewrite_left t := setoid_rewrite <- t.
|
||||
|
||||
Ltac check_no_evars :=
|
||||
match goal with
|
||||
| [|- ?x] => assert_fails (has_evar x)
|
||||
end.
|
||||
|
||||
Require Import Setoid Morphisms.
|
||||
|
||||
Lemma pointwise_forall {X Y:Type} (f g: X -> Y) :
|
||||
(pointwise_relation _ eq f g) -> forall x, f x = g x.
|
||||
Proof.
|
||||
trivial.
|
||||
Qed.
|
||||
|
||||
#[export] Instance funcomp_morphism {X Y Z} :
|
||||
Proper (@pointwise_relation Y Z eq ==> @pointwise_relation X Y eq ==> @pointwise_relation X Z eq) funcomp.
|
||||
Proof.
|
||||
cbv - [funcomp].
|
||||
intros g0 g1 Hg f0 f1 Hf x.
|
||||
unfold funcomp. rewrite Hf, Hg.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
#[export] Instance funcomp_morphism2 {X Y Z} :
|
||||
Proper (@pointwise_relation Y Z eq ==> @pointwise_relation X Y eq ==> eq ==> eq) funcomp.
|
||||
Proof.
|
||||
intros g0 g1 Hg f0 f1 Hf ? x ->.
|
||||
unfold funcomp. rewrite Hf, Hg.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Ltac unfold_funcomp := match goal with
|
||||
| |- context[(funcomp ?f ?g) ?s] => change ((funcomp f g) s) with (f (g s))
|
||||
end.
|
419
theories/Autosubst2/fintype.v
Normal file
419
theories/Autosubst2/fintype.v
Normal file
|
@ -0,0 +1,419 @@
|
|||
(** * Autosubst Header for Scoped Syntax
|
||||
Our development utilises well-scoped de Bruijn syntax. This means that the de Bruijn indices are taken from finite types. As a consequence, any kind of substitution or environment used in conjunction with well-scoped syntax takes the form of a mapping from some finite type _I^n_. In particular, _renamings_ are mappings _I^n -> I^m_. Here we develop the theory of how these parts interact.
|
||||
|
||||
Version: December 11, 2019.
|
||||
*)
|
||||
Require Import core.
|
||||
Require Import Setoid Morphisms Relation_Definitions.
|
||||
|
||||
Set Implicit Arguments.
|
||||
Unset Strict Implicit.
|
||||
|
||||
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
|
||||
match p with eq_refl => eq_refl end.
|
||||
|
||||
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
|
||||
match q with eq_refl => match p with eq_refl => eq_refl end end.
|
||||
|
||||
(** ** Primitives of the Sigma Calculus
|
||||
We implement the finite type with _n_ elements, _I^n_, as the _n_-fold iteration of the Option Type. _I^0_ is implemented as the empty type.
|
||||
*)
|
||||
|
||||
Fixpoint fin (n : nat) : Type :=
|
||||
match n with
|
||||
| 0 => False
|
||||
| S m => option (fin m)
|
||||
end.
|
||||
|
||||
(** Renamings and Injective Renamings
|
||||
_Renamings_ are mappings between finite types.
|
||||
*)
|
||||
Definition ren (m n : nat) : Type := fin m -> fin n.
|
||||
|
||||
Definition id {X} := @Datatypes.id X.
|
||||
|
||||
Definition idren {k: nat} : ren k k := @Datatypes.id (fin k).
|
||||
|
||||
(** We give a special name, to the newest element in a non-empty finite type, as it usually corresponds to a freshly bound variable. *)
|
||||
Definition var_zero {n : nat} : fin (S n) := None.
|
||||
|
||||
Definition null {T} (i : fin 0) : T := match i with end.
|
||||
|
||||
Definition shift {n : nat} : ren n (S n) :=
|
||||
Some.
|
||||
|
||||
(** Extension of Finite Mappings
|
||||
Assume we are given a mapping _f_ from _I^n_ to some type _X_, then we can _extend_ this mapping with a new value from _x : X_ to a mapping from _I^n+1_ to _X_. We denote this operation by _x . f_ and define it as follows:
|
||||
*)
|
||||
Definition scons {X : Type} {n : nat} (x : X) (f : fin n -> X) (m : fin (S n)) : X :=
|
||||
match m with
|
||||
| None => x
|
||||
| Some i => f i
|
||||
end.
|
||||
|
||||
#[ export ]
|
||||
Hint Opaque scons : rewrite.
|
||||
|
||||
(** ** Type Class Instances for Notation *)
|
||||
|
||||
(** *** Type classes for renamings. *)
|
||||
|
||||
Class Ren1 (X1 : Type) (Y Z : Type) :=
|
||||
ren1 : X1 -> Y -> Z.
|
||||
|
||||
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
|
||||
ren2 : X1 -> X2 -> Y -> Z.
|
||||
|
||||
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
|
||||
ren3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||
|
||||
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
|
||||
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||
|
||||
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
|
||||
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||
|
||||
Module RenNotations.
|
||||
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
|
||||
|
||||
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
|
||||
|
||||
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
|
||||
End RenNotations.
|
||||
|
||||
(** *** Type Classes for Substiution *)
|
||||
|
||||
Class Subst1 (X1 : Type) (Y Z: Type) :=
|
||||
subst1 : X1 -> Y -> Z.
|
||||
|
||||
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
|
||||
subst2 : X1 -> X2 -> Y -> Z.
|
||||
|
||||
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
|
||||
subst3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||
|
||||
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
|
||||
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||
|
||||
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
|
||||
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||
|
||||
Module SubstNotations.
|
||||
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
|
||||
|
||||
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
|
||||
End SubstNotations.
|
||||
|
||||
(** ** Type Class for Variables *)
|
||||
Class Var X Y :=
|
||||
ids : X -> Y.
|
||||
|
||||
|
||||
(** ** Proofs for substitution primitives *)
|
||||
|
||||
(** Forward Function Composition
|
||||
Substitutions represented as functions are ubiquitious in this development and we often have to compose them, without talking about their pointwise behaviour.
|
||||
That is, we are interested in the forward compostion of functions, _f o g_, for which we introduce a convenient notation, "f >> g". The direction of the arrow serves as a reminder of the _forward_ nature of this composition, that is first apply _f_, then _g_. *)
|
||||
|
||||
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
|
||||
|
||||
Module CombineNotations.
|
||||
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
|
||||
|
||||
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
|
||||
|
||||
#[ global ]
|
||||
Open Scope fscope.
|
||||
#[ global ]
|
||||
Open Scope subst_scope.
|
||||
End CombineNotations.
|
||||
|
||||
Import CombineNotations.
|
||||
|
||||
|
||||
(** Generic lifting operation for renamings *)
|
||||
Definition up_ren {m n} (xi : ren m n) : ren (S m) (S n) :=
|
||||
var_zero .: xi >> shift.
|
||||
|
||||
(** Generic proof that lifting of renamings composes. *)
|
||||
Lemma up_ren_ren k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
|
||||
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
|
||||
Proof.
|
||||
intros [x|].
|
||||
- cbn. unfold funcomp. now rewrite <- E.
|
||||
- reflexivity.
|
||||
Qed.
|
||||
|
||||
Arguments up_ren_ren {k l m} xi zeta rho E.
|
||||
|
||||
Lemma fin_eta {X} (f g : fin 0 -> X) :
|
||||
pointwise_relation _ eq f g.
|
||||
Proof. intros []. Qed.
|
||||
|
||||
(** Eta laws *)
|
||||
Lemma scons_eta' {T} {n : nat} (f : fin (S n) -> T) :
|
||||
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
|
||||
Proof. intros x. destruct x; reflexivity. Qed.
|
||||
|
||||
Lemma scons_eta_id' {n : nat} :
|
||||
pointwise_relation (fin (S n)) eq (var_zero .: shift) id.
|
||||
Proof. intros x. destruct x; reflexivity. Qed.
|
||||
|
||||
Lemma scons_comp' {T:Type} {U} {m} (s: T) (sigma: fin m -> T) (tau: T -> U) :
|
||||
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
|
||||
Proof. intros x. destruct x; reflexivity. Qed.
|
||||
|
||||
(* Lemma scons_tail'_pointwise {X} {n} (s : X) (f : fin n -> X) : *)
|
||||
(* pointwise_relation _ eq (funcomp (scons s f) shift) f. *)
|
||||
(* Proof. *)
|
||||
(* reflexivity. *)
|
||||
(* Qed. *)
|
||||
|
||||
(* Lemma scons_tail' {X} {n} (s : X) (f : fin n -> X) x : *)
|
||||
(* (scons s f (shift x)) = f x. *)
|
||||
(* Proof. *)
|
||||
(* reflexivity. *)
|
||||
(* Qed. *)
|
||||
|
||||
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
|
||||
#[export] Instance scons_morphism {X: Type} {n:nat} :
|
||||
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X n).
|
||||
Proof.
|
||||
intros t t' -> sigma tau H.
|
||||
intros [x|].
|
||||
cbn. apply H.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
#[export] Instance scons_morphism2 {X: Type} {n: nat} :
|
||||
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X n).
|
||||
Proof.
|
||||
intros ? t -> sigma tau H ? x ->.
|
||||
destruct x as [x|].
|
||||
cbn. apply H.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
(** ** Variadic Substitution Primitives *)
|
||||
|
||||
Fixpoint shift_p (p : nat) {n} : ren n (p + n) :=
|
||||
fun n => match p with
|
||||
| 0 => n
|
||||
| S p => Some (shift_p p n)
|
||||
end.
|
||||
|
||||
Fixpoint scons_p {X: Type} {m : nat} : forall {n} (f : fin m -> X) (g : fin n -> X), fin (m + n) -> X.
|
||||
Proof.
|
||||
destruct m.
|
||||
- intros n f g. exact g.
|
||||
- intros n f g. cbn. apply scons.
|
||||
+ exact (f var_zero).
|
||||
+ apply scons_p.
|
||||
* intros z. exact (f (Some z)).
|
||||
* exact g.
|
||||
Defined.
|
||||
|
||||
#[export] Hint Opaque scons_p : rewrite.
|
||||
|
||||
#[export] Instance scons_p_morphism {X: Type} {m n:nat} :
|
||||
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons_p X m n).
|
||||
Proof.
|
||||
intros sigma sigma' Hsigma tau tau' Htau.
|
||||
intros x.
|
||||
induction m.
|
||||
- cbn. apply Htau.
|
||||
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
|
||||
destruct x as [x|].
|
||||
+ cbn. apply IHm.
|
||||
intros ?. apply Hsigma.
|
||||
+ cbn. apply Hsigma.
|
||||
Qed.
|
||||
|
||||
#[export] Instance scons_p_morphism2 {X: Type} {m n:nat} :
|
||||
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons_p X m n).
|
||||
Proof.
|
||||
intros sigma sigma' Hsigma tau tau' Htau ? x ->.
|
||||
induction m.
|
||||
- cbn. apply Htau.
|
||||
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
|
||||
destruct x as [x|].
|
||||
+ cbn. apply IHm.
|
||||
intros ?. apply Hsigma.
|
||||
+ cbn. apply Hsigma.
|
||||
Qed.
|
||||
|
||||
Definition zero_p {m : nat} {n} : fin m -> fin (m + n).
|
||||
Proof.
|
||||
induction m.
|
||||
- intros [].
|
||||
- intros [x|].
|
||||
+ exact (shift_p 1 (IHm x)).
|
||||
+ exact var_zero.
|
||||
Defined.
|
||||
|
||||
Lemma scons_p_head' {X} {m n} (f : fin m -> X) (g : fin n -> X) z:
|
||||
(scons_p f g) (zero_p z) = f z.
|
||||
Proof.
|
||||
induction m.
|
||||
- inversion z.
|
||||
- destruct z.
|
||||
+ simpl. simpl. now rewrite IHm.
|
||||
+ reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma scons_p_head_pointwise {X} {m n} (f : fin m -> X) (g : fin n -> X) :
|
||||
pointwise_relation _ eq (funcomp (scons_p f g) zero_p) f.
|
||||
Proof.
|
||||
intros z.
|
||||
unfold funcomp.
|
||||
induction m.
|
||||
- inversion z.
|
||||
- destruct z.
|
||||
+ simpl. now rewrite IHm.
|
||||
+ reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma scons_p_tail' X m n (f : fin m -> X) (g : fin n -> X) z :
|
||||
scons_p f g (shift_p m z) = g z.
|
||||
Proof. induction m; cbn; eauto. Qed.
|
||||
|
||||
Lemma scons_p_tail_pointwise X m n (f : fin m -> X) (g : fin n -> X) :
|
||||
pointwise_relation _ eq (funcomp (scons_p f g) (shift_p m)) g.
|
||||
Proof. intros z. induction m; cbn; eauto. Qed.
|
||||
|
||||
Lemma destruct_fin {m n} (x : fin (m + n)):
|
||||
(exists x', x = zero_p x') \/ exists x', x = shift_p m x'.
|
||||
Proof.
|
||||
induction m; simpl in *.
|
||||
- right. eauto.
|
||||
- destruct x as [x|].
|
||||
+ destruct (IHm x) as [[x' ->] |[x' ->]].
|
||||
* left. now exists (Some x').
|
||||
* right. eauto.
|
||||
+ left. exists None. eauto.
|
||||
Qed.
|
||||
|
||||
Lemma scons_p_comp' X Y m n (f : fin m -> X) (g : fin n -> X) (h : X -> Y) :
|
||||
pointwise_relation _ eq (funcomp h (scons_p f g)) (scons_p (f >> h) (g >> h)).
|
||||
Proof.
|
||||
intros x.
|
||||
destruct (destruct_fin x) as [[x' ->]|[x' ->]].
|
||||
(* TODO better way to solve this? *)
|
||||
- revert x'.
|
||||
apply pointwise_forall.
|
||||
change (fun x => (scons_p f g >> h) (zero_p x)) with (zero_p >> scons_p f g >> h).
|
||||
now setoid_rewrite scons_p_head_pointwise.
|
||||
- revert x'.
|
||||
apply pointwise_forall.
|
||||
change (fun x => (scons_p f g >> h) (shift_p m x)) with (shift_p m >> scons_p f g >> h).
|
||||
change (fun x => scons_p (f >> h) (g >> h) (shift_p m x)) with (shift_p m >> scons_p (f >> h) (g >> h)).
|
||||
now rewrite !scons_p_tail_pointwise.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma scons_p_congr {X} {m n} (f f' : fin m -> X) (g g': fin n -> X) z:
|
||||
(forall x, f x = f' x) -> (forall x, g x = g' x) -> scons_p f g z = scons_p f' g' z.
|
||||
Proof. intros H1 H2. induction m; eauto. cbn. destruct z; eauto. Qed.
|
||||
|
||||
(** Generic n-ary lifting operation. *)
|
||||
Definition upRen_p p { m : nat } { n : nat } (xi : (fin) (m) -> (fin) (n)) : fin (p + m) -> fin (p + n) :=
|
||||
scons_p (zero_p ) (xi >> shift_p _).
|
||||
|
||||
Arguments upRen_p p {m n} xi.
|
||||
|
||||
(** Generic proof for composition of n-ary lifting. *)
|
||||
Lemma up_ren_ren_p p k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
|
||||
forall x, (upRen_p p xi >> upRen_p p zeta) x = upRen_p p rho x.
|
||||
Proof.
|
||||
intros x. destruct (destruct_fin x) as [[? ->]|[? ->]].
|
||||
- unfold upRen_p. unfold funcomp. now repeat rewrite scons_p_head'.
|
||||
- unfold upRen_p. unfold funcomp. repeat rewrite scons_p_tail'.
|
||||
now rewrite <- E.
|
||||
Qed.
|
||||
|
||||
|
||||
Arguments zero_p m {n}.
|
||||
Arguments scons_p {X} m {n} f g.
|
||||
|
||||
Lemma scons_p_eta {X} {m n} {f : fin m -> X}
|
||||
{g : fin n -> X} (h: fin (m + n) -> X) {z: fin (m + n)}:
|
||||
(forall x, g x = h (shift_p m x)) -> (forall x, f x = h (zero_p m x)) -> scons_p m f g z = h z.
|
||||
Proof.
|
||||
intros H1 H2. destruct (destruct_fin z) as [[? ->] |[? ->]].
|
||||
- rewrite scons_p_head'. eauto.
|
||||
- rewrite scons_p_tail'. eauto.
|
||||
Qed.
|
||||
|
||||
Arguments scons_p_eta {X} {m n} {f g} h {z}.
|
||||
Arguments scons_p_congr {X} {m n} {f f'} {g g'} {z}.
|
||||
|
||||
(** ** Notations for Scoped Syntax *)
|
||||
|
||||
Module ScopedNotations.
|
||||
Include RenNotations.
|
||||
Include SubstNotations.
|
||||
Include CombineNotations.
|
||||
|
||||
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
|
||||
|
||||
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
|
||||
|
||||
Notation "↑" := (shift) : subst_scope.
|
||||
|
||||
#[global]
|
||||
Open Scope fscope.
|
||||
#[global]
|
||||
Open Scope subst_scope.
|
||||
End ScopedNotations.
|
||||
|
||||
|
||||
(** ** Tactics for Scoped Syntax *)
|
||||
|
||||
Tactic Notation "auto_case" tactic(t) := (match goal with
|
||||
| [|- forall (i : fin 0), _] => intros []; t
|
||||
| [|- forall (i : fin (S (S (S (S _))))), _] => intros [[[[|]|]|]|]; t
|
||||
| [|- forall (i : fin (S (S (S _)))), _] => intros [[[|]|]|]; t
|
||||
| [|- forall (i : fin (S (S _))), _] => intros [[?|]|]; t
|
||||
| [|- forall (i : fin (S _)), _] => intros [?|]; t
|
||||
end).
|
||||
|
||||
#[export] Hint Rewrite @scons_p_head' @scons_p_tail' : FunctorInstances.
|
||||
|
||||
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
|
||||
Ltac fsimpl :=
|
||||
repeat match goal with
|
||||
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
|
||||
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
|
||||
| [|- context [id ?s]] => change (id s) with s
|
||||
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h)) (* AsimplComp *)
|
||||
(* | [|- zero_p >> scons_p ?f ?g] => rewrite scons_p_head *)
|
||||
| [|- context[(?s .: ?sigma) var_zero]] => change ((s.:sigma) var_zero) with s
|
||||
| [|- context[(?s .: ?sigma) (shift ?m)]] => change ((s.:sigma) (shift m)) with (sigma m)
|
||||
(* first [progress setoid_rewrite scons_tail' | progress setoid_rewrite scons_tail'_pointwise ] *)
|
||||
| [|- context[idren >> ?f]] => change (idren >> f) with f
|
||||
| [|- context[?f >> idren]] => change (f >> idren) with f
|
||||
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
|
||||
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f); eta_reduce
|
||||
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite scons_eta'; eta_reduce
|
||||
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
|
||||
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
|
||||
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
|
||||
| [|- context[funcomp _ (scons_p _ _ _)]] => setoid_rewrite scons_p_comp'; eta_reduce
|
||||
| [|- context[scons (@var_zero _) shift]] => setoid_rewrite scons_eta_id'; eta_reduce
|
||||
(* | _ => progress autorewrite with FunctorInstances *)
|
||||
| [|- context[funcomp (scons_p _ _ _) (zero_p _)]] =>
|
||||
first [progress setoid_rewrite scons_p_head_pointwise | progress setoid_rewrite scons_p_head' ]
|
||||
| [|- context[scons_p _ _ _ (zero_p _ _)]] => setoid_rewrite scons_p_head'
|
||||
| [|- context[funcomp (scons_p _ _ _) (shift_p _)]] =>
|
||||
first [progress setoid_rewrite scons_p_tail_pointwise | progress setoid_rewrite scons_p_tail' ]
|
||||
| [|- context[scons_p _ _ _ (shift_p _ _)]] => setoid_rewrite scons_p_tail'
|
||||
| _ => first [progress minimize | progress cbn [shift scons scons_p] ]
|
||||
end.
|
774
theories/Autosubst2/syntax.v
Normal file
774
theories/Autosubst2/syntax.v
Normal file
|
@ -0,0 +1,774 @@
|
|||
Require Import core fintype.
|
||||
|
||||
Require Import Setoid Morphisms Relation_Definitions.
|
||||
|
||||
|
||||
Module Core.
|
||||
|
||||
Inductive Tm (n_Tm : nat) : Type :=
|
||||
| VarTm : fin n_Tm -> Tm n_Tm
|
||||
| Abs : Tm (S n_Tm) -> Tm n_Tm
|
||||
| App : Tm n_Tm -> Tm n_Tm -> Tm n_Tm
|
||||
| Pair : Tm n_Tm -> Tm n_Tm -> Tm n_Tm
|
||||
| Proj1 : Tm n_Tm -> Tm n_Tm
|
||||
| Proj2 : Tm n_Tm -> Tm n_Tm.
|
||||
|
||||
Lemma congr_Abs {m_Tm : nat} {s0 : Tm (S m_Tm)} {t0 : Tm (S m_Tm)}
|
||||
(H0 : s0 = t0) : Abs m_Tm s0 = Abs m_Tm t0.
|
||||
Proof.
|
||||
exact (eq_trans eq_refl (ap (fun x => Abs m_Tm x) H0)).
|
||||
Qed.
|
||||
|
||||
Lemma congr_App {m_Tm : nat} {s0 : Tm m_Tm} {s1 : Tm m_Tm} {t0 : Tm m_Tm}
|
||||
{t1 : Tm m_Tm} (H0 : s0 = t0) (H1 : s1 = t1) :
|
||||
App m_Tm s0 s1 = App m_Tm t0 t1.
|
||||
Proof.
|
||||
exact (eq_trans (eq_trans eq_refl (ap (fun x => App m_Tm x s1) H0))
|
||||
(ap (fun x => App m_Tm t0 x) H1)).
|
||||
Qed.
|
||||
|
||||
Lemma congr_Pair {m_Tm : nat} {s0 : Tm m_Tm} {s1 : Tm m_Tm} {t0 : Tm m_Tm}
|
||||
{t1 : Tm m_Tm} (H0 : s0 = t0) (H1 : s1 = t1) :
|
||||
Pair m_Tm s0 s1 = Pair m_Tm t0 t1.
|
||||
Proof.
|
||||
exact (eq_trans (eq_trans eq_refl (ap (fun x => Pair m_Tm x s1) H0))
|
||||
(ap (fun x => Pair m_Tm t0 x) H1)).
|
||||
Qed.
|
||||
|
||||
Lemma congr_Proj1 {m_Tm : nat} {s0 : Tm m_Tm} {t0 : Tm m_Tm} (H0 : s0 = t0) :
|
||||
Proj1 m_Tm s0 = Proj1 m_Tm t0.
|
||||
Proof.
|
||||
exact (eq_trans eq_refl (ap (fun x => Proj1 m_Tm x) H0)).
|
||||
Qed.
|
||||
|
||||
Lemma congr_Proj2 {m_Tm : nat} {s0 : Tm m_Tm} {t0 : Tm m_Tm} (H0 : s0 = t0) :
|
||||
Proj2 m_Tm s0 = Proj2 m_Tm t0.
|
||||
Proof.
|
||||
exact (eq_trans eq_refl (ap (fun x => Proj2 m_Tm x) H0)).
|
||||
Qed.
|
||||
|
||||
Lemma upRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) :
|
||||
fin (S m) -> fin (S n).
|
||||
Proof.
|
||||
exact (up_ren xi).
|
||||
Defined.
|
||||
|
||||
Lemma upRen_list_Tm_Tm (p : nat) {m : nat} {n : nat} (xi : fin m -> fin n) :
|
||||
fin (plus p m) -> fin (plus p n).
|
||||
Proof.
|
||||
exact (upRen_p p xi).
|
||||
Defined.
|
||||
|
||||
Fixpoint ren_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
|
||||
(s : Tm m_Tm) {struct s} : Tm n_Tm :=
|
||||
match s with
|
||||
| VarTm _ s0 => VarTm n_Tm (xi_Tm s0)
|
||||
| Abs _ s0 => Abs n_Tm (ren_Tm (upRen_Tm_Tm xi_Tm) s0)
|
||||
| App _ s0 s1 => App n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1)
|
||||
| Pair _ s0 s1 => Pair n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1)
|
||||
| Proj1 _ s0 => Proj1 n_Tm (ren_Tm xi_Tm s0)
|
||||
| Proj2 _ s0 => Proj2 n_Tm (ren_Tm xi_Tm s0)
|
||||
end.
|
||||
|
||||
Lemma up_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) :
|
||||
fin (S m) -> Tm (S n_Tm).
|
||||
Proof.
|
||||
exact (scons (VarTm (S n_Tm) var_zero) (funcomp (ren_Tm shift) sigma)).
|
||||
Defined.
|
||||
|
||||
Lemma up_list_Tm_Tm (p : nat) {m : nat} {n_Tm : nat}
|
||||
(sigma : fin m -> Tm n_Tm) : fin (plus p m) -> Tm (plus p n_Tm).
|
||||
Proof.
|
||||
exact (scons_p p (funcomp (VarTm (plus p n_Tm)) (zero_p p))
|
||||
(funcomp (ren_Tm (shift_p p)) sigma)).
|
||||
Defined.
|
||||
|
||||
Fixpoint subst_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
|
||||
(s : Tm m_Tm) {struct s} : Tm n_Tm :=
|
||||
match s with
|
||||
| VarTm _ s0 => sigma_Tm s0
|
||||
| Abs _ s0 => Abs n_Tm (subst_Tm (up_Tm_Tm sigma_Tm) s0)
|
||||
| App _ s0 s1 => App n_Tm (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1)
|
||||
| Pair _ s0 s1 => Pair n_Tm (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1)
|
||||
| Proj1 _ s0 => Proj1 n_Tm (subst_Tm sigma_Tm s0)
|
||||
| Proj2 _ s0 => Proj2 n_Tm (subst_Tm sigma_Tm s0)
|
||||
end.
|
||||
|
||||
Lemma upId_Tm_Tm {m_Tm : nat} (sigma : fin m_Tm -> Tm m_Tm)
|
||||
(Eq : forall x, sigma x = VarTm m_Tm x) :
|
||||
forall x, up_Tm_Tm sigma x = VarTm (S m_Tm) x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
match n with
|
||||
| Some fin_n => ap (ren_Tm shift) (Eq fin_n)
|
||||
| None => eq_refl
|
||||
end).
|
||||
Qed.
|
||||
|
||||
Lemma upId_list_Tm_Tm {p : nat} {m_Tm : nat} (sigma : fin m_Tm -> Tm m_Tm)
|
||||
(Eq : forall x, sigma x = VarTm m_Tm x) :
|
||||
forall x, up_list_Tm_Tm p sigma x = VarTm (plus p m_Tm) x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
scons_p_eta (VarTm (plus p m_Tm))
|
||||
(fun n => ap (ren_Tm (shift_p p)) (Eq n)) (fun n => eq_refl)).
|
||||
Qed.
|
||||
|
||||
Fixpoint idSubst_Tm {m_Tm : nat} (sigma_Tm : fin m_Tm -> Tm m_Tm)
|
||||
(Eq_Tm : forall x, sigma_Tm x = VarTm m_Tm x) (s : Tm m_Tm) {struct s} :
|
||||
subst_Tm sigma_Tm s = s :=
|
||||
match s with
|
||||
| VarTm _ s0 => Eq_Tm s0
|
||||
| Abs _ s0 =>
|
||||
congr_Abs (idSubst_Tm (up_Tm_Tm sigma_Tm) (upId_Tm_Tm _ Eq_Tm) s0)
|
||||
| App _ s0 s1 =>
|
||||
congr_App (idSubst_Tm sigma_Tm Eq_Tm s0) (idSubst_Tm sigma_Tm Eq_Tm s1)
|
||||
| Pair _ s0 s1 =>
|
||||
congr_Pair (idSubst_Tm sigma_Tm Eq_Tm s0)
|
||||
(idSubst_Tm sigma_Tm Eq_Tm s1)
|
||||
| Proj1 _ s0 => congr_Proj1 (idSubst_Tm sigma_Tm Eq_Tm s0)
|
||||
| Proj2 _ s0 => congr_Proj2 (idSubst_Tm sigma_Tm Eq_Tm s0)
|
||||
end.
|
||||
|
||||
Lemma upExtRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n)
|
||||
(zeta : fin m -> fin n) (Eq : forall x, xi x = zeta x) :
|
||||
forall x, upRen_Tm_Tm xi x = upRen_Tm_Tm zeta x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
match n with
|
||||
| Some fin_n => ap shift (Eq fin_n)
|
||||
| None => eq_refl
|
||||
end).
|
||||
Qed.
|
||||
|
||||
Lemma upExtRen_list_Tm_Tm {p : nat} {m : nat} {n : nat} (xi : fin m -> fin n)
|
||||
(zeta : fin m -> fin n) (Eq : forall x, xi x = zeta x) :
|
||||
forall x, upRen_list_Tm_Tm p xi x = upRen_list_Tm_Tm p zeta x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
scons_p_congr (fun n => eq_refl) (fun n => ap (shift_p p) (Eq n))).
|
||||
Qed.
|
||||
|
||||
Fixpoint extRen_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
|
||||
(zeta_Tm : fin m_Tm -> fin n_Tm) (Eq_Tm : forall x, xi_Tm x = zeta_Tm x)
|
||||
(s : Tm m_Tm) {struct s} : ren_Tm xi_Tm s = ren_Tm zeta_Tm s :=
|
||||
match s with
|
||||
| VarTm _ s0 => ap (VarTm n_Tm) (Eq_Tm s0)
|
||||
| Abs _ s0 =>
|
||||
congr_Abs
|
||||
(extRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm)
|
||||
(upExtRen_Tm_Tm _ _ Eq_Tm) s0)
|
||||
| App _ s0 s1 =>
|
||||
congr_App (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0)
|
||||
(extRen_Tm xi_Tm zeta_Tm Eq_Tm s1)
|
||||
| Pair _ s0 s1 =>
|
||||
congr_Pair (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0)
|
||||
(extRen_Tm xi_Tm zeta_Tm Eq_Tm s1)
|
||||
| Proj1 _ s0 => congr_Proj1 (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0)
|
||||
| Proj2 _ s0 => congr_Proj2 (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0)
|
||||
end.
|
||||
|
||||
Lemma upExt_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm)
|
||||
(tau : fin m -> Tm n_Tm) (Eq : forall x, sigma x = tau x) :
|
||||
forall x, up_Tm_Tm sigma x = up_Tm_Tm tau x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
match n with
|
||||
| Some fin_n => ap (ren_Tm shift) (Eq fin_n)
|
||||
| None => eq_refl
|
||||
end).
|
||||
Qed.
|
||||
|
||||
Lemma upExt_list_Tm_Tm {p : nat} {m : nat} {n_Tm : nat}
|
||||
(sigma : fin m -> Tm n_Tm) (tau : fin m -> Tm n_Tm)
|
||||
(Eq : forall x, sigma x = tau x) :
|
||||
forall x, up_list_Tm_Tm p sigma x = up_list_Tm_Tm p tau x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
scons_p_congr (fun n => eq_refl)
|
||||
(fun n => ap (ren_Tm (shift_p p)) (Eq n))).
|
||||
Qed.
|
||||
|
||||
Fixpoint ext_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
|
||||
(tau_Tm : fin m_Tm -> Tm n_Tm) (Eq_Tm : forall x, sigma_Tm x = tau_Tm x)
|
||||
(s : Tm m_Tm) {struct s} : subst_Tm sigma_Tm s = subst_Tm tau_Tm s :=
|
||||
match s with
|
||||
| VarTm _ s0 => Eq_Tm s0
|
||||
| Abs _ s0 =>
|
||||
congr_Abs
|
||||
(ext_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm) (upExt_Tm_Tm _ _ Eq_Tm)
|
||||
s0)
|
||||
| App _ s0 s1 =>
|
||||
congr_App (ext_Tm sigma_Tm tau_Tm Eq_Tm s0)
|
||||
(ext_Tm sigma_Tm tau_Tm Eq_Tm s1)
|
||||
| Pair _ s0 s1 =>
|
||||
congr_Pair (ext_Tm sigma_Tm tau_Tm Eq_Tm s0)
|
||||
(ext_Tm sigma_Tm tau_Tm Eq_Tm s1)
|
||||
| Proj1 _ s0 => congr_Proj1 (ext_Tm sigma_Tm tau_Tm Eq_Tm s0)
|
||||
| Proj2 _ s0 => congr_Proj2 (ext_Tm sigma_Tm tau_Tm Eq_Tm s0)
|
||||
end.
|
||||
|
||||
Lemma up_ren_ren_Tm_Tm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l)
|
||||
(zeta : fin l -> fin m) (rho : fin k -> fin m)
|
||||
(Eq : forall x, funcomp zeta xi x = rho x) :
|
||||
forall x, funcomp (upRen_Tm_Tm zeta) (upRen_Tm_Tm xi) x = upRen_Tm_Tm rho x.
|
||||
Proof.
|
||||
exact (up_ren_ren xi zeta rho Eq).
|
||||
Qed.
|
||||
|
||||
Lemma up_ren_ren_list_Tm_Tm {p : nat} {k : nat} {l : nat} {m : nat}
|
||||
(xi : fin k -> fin l) (zeta : fin l -> fin m) (rho : fin k -> fin m)
|
||||
(Eq : forall x, funcomp zeta xi x = rho x) :
|
||||
forall x,
|
||||
funcomp (upRen_list_Tm_Tm p zeta) (upRen_list_Tm_Tm p xi) x =
|
||||
upRen_list_Tm_Tm p rho x.
|
||||
Proof.
|
||||
exact (up_ren_ren_p Eq).
|
||||
Qed.
|
||||
|
||||
Fixpoint compRenRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(xi_Tm : fin m_Tm -> fin k_Tm) (zeta_Tm : fin k_Tm -> fin l_Tm)
|
||||
(rho_Tm : fin m_Tm -> fin l_Tm)
|
||||
(Eq_Tm : forall x, funcomp zeta_Tm xi_Tm x = rho_Tm x) (s : Tm m_Tm) {struct
|
||||
s} : ren_Tm zeta_Tm (ren_Tm xi_Tm s) = ren_Tm rho_Tm s :=
|
||||
match s with
|
||||
| VarTm _ s0 => ap (VarTm l_Tm) (Eq_Tm s0)
|
||||
| Abs _ s0 =>
|
||||
congr_Abs
|
||||
(compRenRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm)
|
||||
(upRen_Tm_Tm rho_Tm) (up_ren_ren _ _ _ Eq_Tm) s0)
|
||||
| App _ s0 s1 =>
|
||||
congr_App (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0)
|
||||
(compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1)
|
||||
| Pair _ s0 s1 =>
|
||||
congr_Pair (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0)
|
||||
(compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1)
|
||||
| Proj1 _ s0 => congr_Proj1 (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0)
|
||||
| Proj2 _ s0 => congr_Proj2 (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0)
|
||||
end.
|
||||
|
||||
Lemma up_ren_subst_Tm_Tm {k : nat} {l : nat} {m_Tm : nat}
|
||||
(xi : fin k -> fin l) (tau : fin l -> Tm m_Tm) (theta : fin k -> Tm m_Tm)
|
||||
(Eq : forall x, funcomp tau xi x = theta x) :
|
||||
forall x, funcomp (up_Tm_Tm tau) (upRen_Tm_Tm xi) x = up_Tm_Tm theta x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
match n with
|
||||
| Some fin_n => ap (ren_Tm shift) (Eq fin_n)
|
||||
| None => eq_refl
|
||||
end).
|
||||
Qed.
|
||||
|
||||
Lemma up_ren_subst_list_Tm_Tm {p : nat} {k : nat} {l : nat} {m_Tm : nat}
|
||||
(xi : fin k -> fin l) (tau : fin l -> Tm m_Tm) (theta : fin k -> Tm m_Tm)
|
||||
(Eq : forall x, funcomp tau xi x = theta x) :
|
||||
forall x,
|
||||
funcomp (up_list_Tm_Tm p tau) (upRen_list_Tm_Tm p xi) x =
|
||||
up_list_Tm_Tm p theta x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
eq_trans (scons_p_comp' _ _ _ n)
|
||||
(scons_p_congr (fun z => scons_p_head' _ _ z)
|
||||
(fun z =>
|
||||
eq_trans (scons_p_tail' _ _ (xi z))
|
||||
(ap (ren_Tm (shift_p p)) (Eq z))))).
|
||||
Qed.
|
||||
|
||||
Fixpoint compRenSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(xi_Tm : fin m_Tm -> fin k_Tm) (tau_Tm : fin k_Tm -> Tm l_Tm)
|
||||
(theta_Tm : fin m_Tm -> Tm l_Tm)
|
||||
(Eq_Tm : forall x, funcomp tau_Tm xi_Tm x = theta_Tm x) (s : Tm m_Tm) {struct
|
||||
s} : subst_Tm tau_Tm (ren_Tm xi_Tm s) = subst_Tm theta_Tm s :=
|
||||
match s with
|
||||
| VarTm _ s0 => Eq_Tm s0
|
||||
| Abs _ s0 =>
|
||||
congr_Abs
|
||||
(compRenSubst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm tau_Tm)
|
||||
(up_Tm_Tm theta_Tm) (up_ren_subst_Tm_Tm _ _ _ Eq_Tm) s0)
|
||||
| App _ s0 s1 =>
|
||||
congr_App (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0)
|
||||
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1)
|
||||
| Pair _ s0 s1 =>
|
||||
congr_Pair (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0)
|
||||
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1)
|
||||
| Proj1 _ s0 =>
|
||||
congr_Proj1 (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0)
|
||||
| Proj2 _ s0 =>
|
||||
congr_Proj2 (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0)
|
||||
end.
|
||||
|
||||
Lemma up_subst_ren_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(sigma : fin k -> Tm l_Tm) (zeta_Tm : fin l_Tm -> fin m_Tm)
|
||||
(theta : fin k -> Tm m_Tm)
|
||||
(Eq : forall x, funcomp (ren_Tm zeta_Tm) sigma x = theta x) :
|
||||
forall x,
|
||||
funcomp (ren_Tm (upRen_Tm_Tm zeta_Tm)) (up_Tm_Tm sigma) x =
|
||||
up_Tm_Tm theta x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
match n with
|
||||
| Some fin_n =>
|
||||
eq_trans
|
||||
(compRenRen_Tm shift (upRen_Tm_Tm zeta_Tm)
|
||||
(funcomp shift zeta_Tm) (fun x => eq_refl) (sigma fin_n))
|
||||
(eq_trans
|
||||
(eq_sym
|
||||
(compRenRen_Tm zeta_Tm shift (funcomp shift zeta_Tm)
|
||||
(fun x => eq_refl) (sigma fin_n)))
|
||||
(ap (ren_Tm shift) (Eq fin_n)))
|
||||
| None => eq_refl
|
||||
end).
|
||||
Qed.
|
||||
|
||||
Lemma up_subst_ren_list_Tm_Tm {p : nat} {k : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(sigma : fin k -> Tm l_Tm) (zeta_Tm : fin l_Tm -> fin m_Tm)
|
||||
(theta : fin k -> Tm m_Tm)
|
||||
(Eq : forall x, funcomp (ren_Tm zeta_Tm) sigma x = theta x) :
|
||||
forall x,
|
||||
funcomp (ren_Tm (upRen_list_Tm_Tm p zeta_Tm)) (up_list_Tm_Tm p sigma) x =
|
||||
up_list_Tm_Tm p theta x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
eq_trans (scons_p_comp' _ _ _ n)
|
||||
(scons_p_congr
|
||||
(fun x => ap (VarTm (plus p m_Tm)) (scons_p_head' _ _ x))
|
||||
(fun n =>
|
||||
eq_trans
|
||||
(compRenRen_Tm (shift_p p) (upRen_list_Tm_Tm p zeta_Tm)
|
||||
(funcomp (shift_p p) zeta_Tm)
|
||||
(fun x => scons_p_tail' _ _ x) (sigma n))
|
||||
(eq_trans
|
||||
(eq_sym
|
||||
(compRenRen_Tm zeta_Tm (shift_p p)
|
||||
(funcomp (shift_p p) zeta_Tm) (fun x => eq_refl)
|
||||
(sigma n))) (ap (ren_Tm (shift_p p)) (Eq n)))))).
|
||||
Qed.
|
||||
|
||||
Fixpoint compSubstRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(sigma_Tm : fin m_Tm -> Tm k_Tm) (zeta_Tm : fin k_Tm -> fin l_Tm)
|
||||
(theta_Tm : fin m_Tm -> Tm l_Tm)
|
||||
(Eq_Tm : forall x, funcomp (ren_Tm zeta_Tm) sigma_Tm x = theta_Tm x)
|
||||
(s : Tm m_Tm) {struct s} :
|
||||
ren_Tm zeta_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
|
||||
match s with
|
||||
| VarTm _ s0 => Eq_Tm s0
|
||||
| Abs _ s0 =>
|
||||
congr_Abs
|
||||
(compSubstRen_Tm (up_Tm_Tm sigma_Tm) (upRen_Tm_Tm zeta_Tm)
|
||||
(up_Tm_Tm theta_Tm) (up_subst_ren_Tm_Tm _ _ _ Eq_Tm) s0)
|
||||
| App _ s0 s1 =>
|
||||
congr_App (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0)
|
||||
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1)
|
||||
| Pair _ s0 s1 =>
|
||||
congr_Pair (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0)
|
||||
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1)
|
||||
| Proj1 _ s0 =>
|
||||
congr_Proj1 (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0)
|
||||
| Proj2 _ s0 =>
|
||||
congr_Proj2 (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0)
|
||||
end.
|
||||
|
||||
Lemma up_subst_subst_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(sigma : fin k -> Tm l_Tm) (tau_Tm : fin l_Tm -> Tm m_Tm)
|
||||
(theta : fin k -> Tm m_Tm)
|
||||
(Eq : forall x, funcomp (subst_Tm tau_Tm) sigma x = theta x) :
|
||||
forall x,
|
||||
funcomp (subst_Tm (up_Tm_Tm tau_Tm)) (up_Tm_Tm sigma) x = up_Tm_Tm theta x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
match n with
|
||||
| Some fin_n =>
|
||||
eq_trans
|
||||
(compRenSubst_Tm shift (up_Tm_Tm tau_Tm)
|
||||
(funcomp (up_Tm_Tm tau_Tm) shift) (fun x => eq_refl)
|
||||
(sigma fin_n))
|
||||
(eq_trans
|
||||
(eq_sym
|
||||
(compSubstRen_Tm tau_Tm shift
|
||||
(funcomp (ren_Tm shift) tau_Tm) (fun x => eq_refl)
|
||||
(sigma fin_n))) (ap (ren_Tm shift) (Eq fin_n)))
|
||||
| None => eq_refl
|
||||
end).
|
||||
Qed.
|
||||
|
||||
Lemma up_subst_subst_list_Tm_Tm {p : nat} {k : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(sigma : fin k -> Tm l_Tm) (tau_Tm : fin l_Tm -> Tm m_Tm)
|
||||
(theta : fin k -> Tm m_Tm)
|
||||
(Eq : forall x, funcomp (subst_Tm tau_Tm) sigma x = theta x) :
|
||||
forall x,
|
||||
funcomp (subst_Tm (up_list_Tm_Tm p tau_Tm)) (up_list_Tm_Tm p sigma) x =
|
||||
up_list_Tm_Tm p theta x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
eq_trans
|
||||
(scons_p_comp' (funcomp (VarTm (plus p l_Tm)) (zero_p p)) _ _ n)
|
||||
(scons_p_congr
|
||||
(fun x => scons_p_head' _ (fun z => ren_Tm (shift_p p) _) x)
|
||||
(fun n =>
|
||||
eq_trans
|
||||
(compRenSubst_Tm (shift_p p) (up_list_Tm_Tm p tau_Tm)
|
||||
(funcomp (up_list_Tm_Tm p tau_Tm) (shift_p p))
|
||||
(fun x => eq_refl) (sigma n))
|
||||
(eq_trans
|
||||
(eq_sym
|
||||
(compSubstRen_Tm tau_Tm (shift_p p) _
|
||||
(fun x => eq_sym (scons_p_tail' _ _ x)) (sigma n)))
|
||||
(ap (ren_Tm (shift_p p)) (Eq n)))))).
|
||||
Qed.
|
||||
|
||||
Fixpoint compSubstSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(sigma_Tm : fin m_Tm -> Tm k_Tm) (tau_Tm : fin k_Tm -> Tm l_Tm)
|
||||
(theta_Tm : fin m_Tm -> Tm l_Tm)
|
||||
(Eq_Tm : forall x, funcomp (subst_Tm tau_Tm) sigma_Tm x = theta_Tm x)
|
||||
(s : Tm m_Tm) {struct s} :
|
||||
subst_Tm tau_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
|
||||
match s with
|
||||
| VarTm _ s0 => Eq_Tm s0
|
||||
| Abs _ s0 =>
|
||||
congr_Abs
|
||||
(compSubstSubst_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm)
|
||||
(up_Tm_Tm theta_Tm) (up_subst_subst_Tm_Tm _ _ _ Eq_Tm) s0)
|
||||
| App _ s0 s1 =>
|
||||
congr_App (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0)
|
||||
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1)
|
||||
| Pair _ s0 s1 =>
|
||||
congr_Pair (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0)
|
||||
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1)
|
||||
| Proj1 _ s0 =>
|
||||
congr_Proj1 (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0)
|
||||
| Proj2 _ s0 =>
|
||||
congr_Proj2 (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0)
|
||||
end.
|
||||
|
||||
Lemma renRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(xi_Tm : fin m_Tm -> fin k_Tm) (zeta_Tm : fin k_Tm -> fin l_Tm)
|
||||
(s : Tm m_Tm) :
|
||||
ren_Tm zeta_Tm (ren_Tm xi_Tm s) = ren_Tm (funcomp zeta_Tm xi_Tm) s.
|
||||
Proof.
|
||||
exact (compRenRen_Tm xi_Tm zeta_Tm _ (fun n => eq_refl) s).
|
||||
Qed.
|
||||
|
||||
Lemma renRen'_Tm_pointwise {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(xi_Tm : fin m_Tm -> fin k_Tm) (zeta_Tm : fin k_Tm -> fin l_Tm) :
|
||||
pointwise_relation _ eq (funcomp (ren_Tm zeta_Tm) (ren_Tm xi_Tm))
|
||||
(ren_Tm (funcomp zeta_Tm xi_Tm)).
|
||||
Proof.
|
||||
exact (fun s => compRenRen_Tm xi_Tm zeta_Tm _ (fun n => eq_refl) s).
|
||||
Qed.
|
||||
|
||||
Lemma renSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(xi_Tm : fin m_Tm -> fin k_Tm) (tau_Tm : fin k_Tm -> Tm l_Tm) (s : Tm m_Tm)
|
||||
: subst_Tm tau_Tm (ren_Tm xi_Tm s) = subst_Tm (funcomp tau_Tm xi_Tm) s.
|
||||
Proof.
|
||||
exact (compRenSubst_Tm xi_Tm tau_Tm _ (fun n => eq_refl) s).
|
||||
Qed.
|
||||
|
||||
Lemma renSubst_Tm_pointwise {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(xi_Tm : fin m_Tm -> fin k_Tm) (tau_Tm : fin k_Tm -> Tm l_Tm) :
|
||||
pointwise_relation _ eq (funcomp (subst_Tm tau_Tm) (ren_Tm xi_Tm))
|
||||
(subst_Tm (funcomp tau_Tm xi_Tm)).
|
||||
Proof.
|
||||
exact (fun s => compRenSubst_Tm xi_Tm tau_Tm _ (fun n => eq_refl) s).
|
||||
Qed.
|
||||
|
||||
Lemma substRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(sigma_Tm : fin m_Tm -> Tm k_Tm) (zeta_Tm : fin k_Tm -> fin l_Tm)
|
||||
(s : Tm m_Tm) :
|
||||
ren_Tm zeta_Tm (subst_Tm sigma_Tm s) =
|
||||
subst_Tm (funcomp (ren_Tm zeta_Tm) sigma_Tm) s.
|
||||
Proof.
|
||||
exact (compSubstRen_Tm sigma_Tm zeta_Tm _ (fun n => eq_refl) s).
|
||||
Qed.
|
||||
|
||||
Lemma substRen_Tm_pointwise {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(sigma_Tm : fin m_Tm -> Tm k_Tm) (zeta_Tm : fin k_Tm -> fin l_Tm) :
|
||||
pointwise_relation _ eq (funcomp (ren_Tm zeta_Tm) (subst_Tm sigma_Tm))
|
||||
(subst_Tm (funcomp (ren_Tm zeta_Tm) sigma_Tm)).
|
||||
Proof.
|
||||
exact (fun s => compSubstRen_Tm sigma_Tm zeta_Tm _ (fun n => eq_refl) s).
|
||||
Qed.
|
||||
|
||||
Lemma substSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(sigma_Tm : fin m_Tm -> Tm k_Tm) (tau_Tm : fin k_Tm -> Tm l_Tm)
|
||||
(s : Tm m_Tm) :
|
||||
subst_Tm tau_Tm (subst_Tm sigma_Tm s) =
|
||||
subst_Tm (funcomp (subst_Tm tau_Tm) sigma_Tm) s.
|
||||
Proof.
|
||||
exact (compSubstSubst_Tm sigma_Tm tau_Tm _ (fun n => eq_refl) s).
|
||||
Qed.
|
||||
|
||||
Lemma substSubst_Tm_pointwise {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
|
||||
(sigma_Tm : fin m_Tm -> Tm k_Tm) (tau_Tm : fin k_Tm -> Tm l_Tm) :
|
||||
pointwise_relation _ eq (funcomp (subst_Tm tau_Tm) (subst_Tm sigma_Tm))
|
||||
(subst_Tm (funcomp (subst_Tm tau_Tm) sigma_Tm)).
|
||||
Proof.
|
||||
exact (fun s => compSubstSubst_Tm sigma_Tm tau_Tm _ (fun n => eq_refl) s).
|
||||
Qed.
|
||||
|
||||
Lemma rinstInst_up_Tm_Tm {m : nat} {n_Tm : nat} (xi : fin m -> fin n_Tm)
|
||||
(sigma : fin m -> Tm n_Tm)
|
||||
(Eq : forall x, funcomp (VarTm n_Tm) xi x = sigma x) :
|
||||
forall x, funcomp (VarTm (S n_Tm)) (upRen_Tm_Tm xi) x = up_Tm_Tm sigma x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
match n with
|
||||
| Some fin_n => ap (ren_Tm shift) (Eq fin_n)
|
||||
| None => eq_refl
|
||||
end).
|
||||
Qed.
|
||||
|
||||
Lemma rinstInst_up_list_Tm_Tm {p : nat} {m : nat} {n_Tm : nat}
|
||||
(xi : fin m -> fin n_Tm) (sigma : fin m -> Tm n_Tm)
|
||||
(Eq : forall x, funcomp (VarTm n_Tm) xi x = sigma x) :
|
||||
forall x,
|
||||
funcomp (VarTm (plus p n_Tm)) (upRen_list_Tm_Tm p xi) x =
|
||||
up_list_Tm_Tm p sigma x.
|
||||
Proof.
|
||||
exact (fun n =>
|
||||
eq_trans (scons_p_comp' _ _ (VarTm (plus p n_Tm)) n)
|
||||
(scons_p_congr (fun z => eq_refl)
|
||||
(fun n => ap (ren_Tm (shift_p p)) (Eq n)))).
|
||||
Qed.
|
||||
|
||||
Fixpoint rinst_inst_Tm {m_Tm : nat} {n_Tm : nat}
|
||||
(xi_Tm : fin m_Tm -> fin n_Tm) (sigma_Tm : fin m_Tm -> Tm n_Tm)
|
||||
(Eq_Tm : forall x, funcomp (VarTm n_Tm) xi_Tm x = sigma_Tm x) (s : Tm m_Tm)
|
||||
{struct s} : ren_Tm xi_Tm s = subst_Tm sigma_Tm s :=
|
||||
match s with
|
||||
| VarTm _ s0 => Eq_Tm s0
|
||||
| Abs _ s0 =>
|
||||
congr_Abs
|
||||
(rinst_inst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm sigma_Tm)
|
||||
(rinstInst_up_Tm_Tm _ _ Eq_Tm) s0)
|
||||
| App _ s0 s1 =>
|
||||
congr_App (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0)
|
||||
(rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1)
|
||||
| Pair _ s0 s1 =>
|
||||
congr_Pair (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0)
|
||||
(rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1)
|
||||
| Proj1 _ s0 => congr_Proj1 (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0)
|
||||
| Proj2 _ s0 => congr_Proj2 (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0)
|
||||
end.
|
||||
|
||||
Lemma rinstInst'_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
|
||||
(s : Tm m_Tm) : ren_Tm xi_Tm s = subst_Tm (funcomp (VarTm n_Tm) xi_Tm) s.
|
||||
Proof.
|
||||
exact (rinst_inst_Tm xi_Tm _ (fun n => eq_refl) s).
|
||||
Qed.
|
||||
|
||||
Lemma rinstInst'_Tm_pointwise {m_Tm : nat} {n_Tm : nat}
|
||||
(xi_Tm : fin m_Tm -> fin n_Tm) :
|
||||
pointwise_relation _ eq (ren_Tm xi_Tm)
|
||||
(subst_Tm (funcomp (VarTm n_Tm) xi_Tm)).
|
||||
Proof.
|
||||
exact (fun s => rinst_inst_Tm xi_Tm _ (fun n => eq_refl) s).
|
||||
Qed.
|
||||
|
||||
Lemma instId'_Tm {m_Tm : nat} (s : Tm m_Tm) : subst_Tm (VarTm m_Tm) s = s.
|
||||
Proof.
|
||||
exact (idSubst_Tm (VarTm m_Tm) (fun n => eq_refl) s).
|
||||
Qed.
|
||||
|
||||
Lemma instId'_Tm_pointwise {m_Tm : nat} :
|
||||
pointwise_relation _ eq (subst_Tm (VarTm m_Tm)) id.
|
||||
Proof.
|
||||
exact (fun s => idSubst_Tm (VarTm m_Tm) (fun n => eq_refl) s).
|
||||
Qed.
|
||||
|
||||
Lemma rinstId'_Tm {m_Tm : nat} (s : Tm m_Tm) : ren_Tm id s = s.
|
||||
Proof.
|
||||
exact (eq_ind_r (fun t => t = s) (instId'_Tm s) (rinstInst'_Tm id s)).
|
||||
Qed.
|
||||
|
||||
Lemma rinstId'_Tm_pointwise {m_Tm : nat} :
|
||||
pointwise_relation _ eq (@ren_Tm m_Tm m_Tm id) id.
|
||||
Proof.
|
||||
exact (fun s => eq_ind_r (fun t => t = s) (instId'_Tm s) (rinstInst'_Tm id s)).
|
||||
Qed.
|
||||
|
||||
Lemma varL'_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
|
||||
(x : fin m_Tm) : subst_Tm sigma_Tm (VarTm m_Tm x) = sigma_Tm x.
|
||||
Proof.
|
||||
exact (eq_refl).
|
||||
Qed.
|
||||
|
||||
Lemma varL'_Tm_pointwise {m_Tm : nat} {n_Tm : nat}
|
||||
(sigma_Tm : fin m_Tm -> Tm n_Tm) :
|
||||
pointwise_relation _ eq (funcomp (subst_Tm sigma_Tm) (VarTm m_Tm)) sigma_Tm.
|
||||
Proof.
|
||||
exact (fun x => eq_refl).
|
||||
Qed.
|
||||
|
||||
Lemma varLRen'_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
|
||||
(x : fin m_Tm) : ren_Tm xi_Tm (VarTm m_Tm x) = VarTm n_Tm (xi_Tm x).
|
||||
Proof.
|
||||
exact (eq_refl).
|
||||
Qed.
|
||||
|
||||
Lemma varLRen'_Tm_pointwise {m_Tm : nat} {n_Tm : nat}
|
||||
(xi_Tm : fin m_Tm -> fin n_Tm) :
|
||||
pointwise_relation _ eq (funcomp (ren_Tm xi_Tm) (VarTm m_Tm))
|
||||
(funcomp (VarTm n_Tm) xi_Tm).
|
||||
Proof.
|
||||
exact (fun x => eq_refl).
|
||||
Qed.
|
||||
|
||||
Class Up_Tm X Y :=
|
||||
up_Tm : X -> Y.
|
||||
|
||||
#[global]
|
||||
Instance Subst_Tm {m_Tm n_Tm : nat}: (Subst1 _ _ _) := (@subst_Tm m_Tm n_Tm).
|
||||
|
||||
#[global]
|
||||
Instance Up_Tm_Tm {m n_Tm : nat}: (Up_Tm _ _) := (@up_Tm_Tm m n_Tm).
|
||||
|
||||
#[global]
|
||||
Instance Ren_Tm {m_Tm n_Tm : nat}: (Ren1 _ _ _) := (@ren_Tm m_Tm n_Tm).
|
||||
|
||||
#[global]
|
||||
Instance VarInstance_Tm {n_Tm : nat}: (Var _ _) := (@VarTm n_Tm).
|
||||
|
||||
Notation "[ sigma_Tm ]" := (subst_Tm sigma_Tm)
|
||||
( at level 1, left associativity, only printing) : fscope.
|
||||
|
||||
Notation "s [ sigma_Tm ]" := (subst_Tm sigma_Tm s)
|
||||
( at level 7, left associativity, only printing) : subst_scope.
|
||||
|
||||
Notation "↑__Tm" := up_Tm (only printing) : subst_scope.
|
||||
|
||||
Notation "↑__Tm" := up_Tm_Tm (only printing) : subst_scope.
|
||||
|
||||
Notation "⟨ xi_Tm ⟩" := (ren_Tm xi_Tm)
|
||||
( at level 1, left associativity, only printing) : fscope.
|
||||
|
||||
Notation "s ⟨ xi_Tm ⟩" := (ren_Tm xi_Tm s)
|
||||
( at level 7, left associativity, only printing) : subst_scope.
|
||||
|
||||
Notation "'var'" := VarTm ( at level 1, only printing) : subst_scope.
|
||||
|
||||
Notation "x '__Tm'" := (@ids _ _ VarInstance_Tm x)
|
||||
( at level 5, format "x __Tm", only printing) : subst_scope.
|
||||
|
||||
Notation "x '__Tm'" := (VarTm x) ( at level 5, format "x __Tm") :
|
||||
subst_scope.
|
||||
|
||||
#[global]
|
||||
Instance subst_Tm_morphism {m_Tm : nat} {n_Tm : nat}:
|
||||
(Proper (respectful (pointwise_relation _ eq) (respectful eq eq))
|
||||
(@subst_Tm m_Tm n_Tm)).
|
||||
Proof.
|
||||
exact (fun f_Tm g_Tm Eq_Tm s t Eq_st =>
|
||||
eq_ind s (fun t' => subst_Tm f_Tm s = subst_Tm g_Tm t')
|
||||
(ext_Tm f_Tm g_Tm Eq_Tm s) t Eq_st).
|
||||
Qed.
|
||||
|
||||
#[global]
|
||||
Instance subst_Tm_morphism2 {m_Tm : nat} {n_Tm : nat}:
|
||||
(Proper (respectful (pointwise_relation _ eq) (pointwise_relation _ eq))
|
||||
(@subst_Tm m_Tm n_Tm)).
|
||||
Proof.
|
||||
exact (fun f_Tm g_Tm Eq_Tm s => ext_Tm f_Tm g_Tm Eq_Tm s).
|
||||
Qed.
|
||||
|
||||
#[global]
|
||||
Instance ren_Tm_morphism {m_Tm : nat} {n_Tm : nat}:
|
||||
(Proper (respectful (pointwise_relation _ eq) (respectful eq eq))
|
||||
(@ren_Tm m_Tm n_Tm)).
|
||||
Proof.
|
||||
exact (fun f_Tm g_Tm Eq_Tm s t Eq_st =>
|
||||
eq_ind s (fun t' => ren_Tm f_Tm s = ren_Tm g_Tm t')
|
||||
(extRen_Tm f_Tm g_Tm Eq_Tm s) t Eq_st).
|
||||
Qed.
|
||||
|
||||
#[global]
|
||||
Instance ren_Tm_morphism2 {m_Tm : nat} {n_Tm : nat}:
|
||||
(Proper (respectful (pointwise_relation _ eq) (pointwise_relation _ eq))
|
||||
(@ren_Tm m_Tm n_Tm)).
|
||||
Proof.
|
||||
exact (fun f_Tm g_Tm Eq_Tm s => extRen_Tm f_Tm g_Tm Eq_Tm s).
|
||||
Qed.
|
||||
|
||||
Ltac auto_unfold := repeat
|
||||
unfold VarInstance_Tm, Var, ids, Ren_Tm, Ren1, ren1,
|
||||
Up_Tm_Tm, Up_Tm, up_Tm, Subst_Tm, Subst1, subst1.
|
||||
|
||||
Tactic Notation "auto_unfold" "in" "*" := repeat
|
||||
unfold VarInstance_Tm, Var, ids,
|
||||
Ren_Tm, Ren1, ren1, Up_Tm_Tm,
|
||||
Up_Tm, up_Tm, Subst_Tm, Subst1,
|
||||
subst1 in *.
|
||||
|
||||
Ltac asimpl' := repeat (first
|
||||
[ progress setoid_rewrite substSubst_Tm_pointwise
|
||||
| progress setoid_rewrite substSubst_Tm
|
||||
| progress setoid_rewrite substRen_Tm_pointwise
|
||||
| progress setoid_rewrite substRen_Tm
|
||||
| progress setoid_rewrite renSubst_Tm_pointwise
|
||||
| progress setoid_rewrite renSubst_Tm
|
||||
| progress setoid_rewrite renRen'_Tm_pointwise
|
||||
| progress setoid_rewrite renRen_Tm
|
||||
| progress setoid_rewrite varLRen'_Tm_pointwise
|
||||
| progress setoid_rewrite varLRen'_Tm
|
||||
| progress setoid_rewrite varL'_Tm_pointwise
|
||||
| progress setoid_rewrite varL'_Tm
|
||||
| progress setoid_rewrite rinstId'_Tm_pointwise
|
||||
| progress setoid_rewrite rinstId'_Tm
|
||||
| progress setoid_rewrite instId'_Tm_pointwise
|
||||
| progress setoid_rewrite instId'_Tm
|
||||
| progress
|
||||
unfold up_list_Tm_Tm, up_Tm_Tm, upRen_list_Tm_Tm,
|
||||
upRen_Tm_Tm, up_ren
|
||||
| progress cbn[subst_Tm ren_Tm]
|
||||
| progress fsimpl ]).
|
||||
|
||||
Ltac asimpl := check_no_evars;
|
||||
repeat
|
||||
unfold VarInstance_Tm, Var, ids, Ren_Tm, Ren1, ren1,
|
||||
Up_Tm_Tm, Up_Tm, up_Tm, Subst_Tm, Subst1, subst1 in *;
|
||||
asimpl'; minimize.
|
||||
|
||||
Tactic Notation "asimpl" "in" hyp(J) := revert J; asimpl; intros J.
|
||||
|
||||
Tactic Notation "auto_case" := auto_case ltac:(asimpl; cbn; eauto).
|
||||
|
||||
Ltac substify := auto_unfold; try setoid_rewrite rinstInst'_Tm_pointwise;
|
||||
try setoid_rewrite rinstInst'_Tm.
|
||||
|
||||
Ltac renamify := auto_unfold; try setoid_rewrite_left rinstInst'_Tm_pointwise;
|
||||
try setoid_rewrite_left rinstInst'_Tm.
|
||||
|
||||
End Core.
|
||||
|
||||
Module Extra.
|
||||
|
||||
Import
|
||||
Core.
|
||||
|
||||
Arguments VarTm {n_Tm}.
|
||||
|
||||
Arguments Proj2 {n_Tm}.
|
||||
|
||||
Arguments Proj1 {n_Tm}.
|
||||
|
||||
Arguments Pair {n_Tm}.
|
||||
|
||||
Arguments App {n_Tm}.
|
||||
|
||||
Arguments Abs {n_Tm}.
|
||||
|
||||
#[global]Hint Opaque subst_Tm: rewrite.
|
||||
|
||||
#[global]Hint Opaque ren_Tm: rewrite.
|
||||
|
||||
End Extra.
|
||||
|
||||
Module interface.
|
||||
|
||||
Export Core.
|
||||
|
||||
Export Extra.
|
||||
|
||||
End interface.
|
||||
|
||||
Export interface.
|
||||
|
Loading…
Add table
Reference in a new issue