Prove injectivity of Pair and Lambdas
This commit is contained in:
parent
fd8335a803
commit
0f1e85c853
1 changed files with 50 additions and 0 deletions
|
@ -262,6 +262,17 @@ Module Pars.
|
||||||
rtc Par.R (Pair a0 b0) (Pair a1 b1).
|
rtc Par.R (Pair a0 b0) (Pair a1 b1).
|
||||||
Proof. solve_s. Qed.
|
Proof. solve_s. Qed.
|
||||||
|
|
||||||
|
Lemma AppCong n (a0 a1 b0 b1 : Tm n) :
|
||||||
|
rtc Par.R a0 a1 ->
|
||||||
|
rtc Par.R b0 b1 ->
|
||||||
|
rtc Par.R (App a0 b0) (App a1 b1).
|
||||||
|
Proof. solve_s. Qed.
|
||||||
|
|
||||||
|
Lemma AbsCong n (a b : Tm (S n)) :
|
||||||
|
rtc Par.R a b ->
|
||||||
|
rtc Par.R (Abs a) (Abs b).
|
||||||
|
Proof. solve_s. Qed.
|
||||||
|
|
||||||
End Pars.
|
End Pars.
|
||||||
|
|
||||||
Definition var_or_bot {n} (a : Tm n) :=
|
Definition var_or_bot {n} (a : Tm n) :=
|
||||||
|
@ -2527,6 +2538,29 @@ Module Join.
|
||||||
join (Pair a0 b0) (Pair a1 b1).
|
join (Pair a0 b0) (Pair a1 b1).
|
||||||
Proof. hauto lq:on use:Pars.PairCong unfold:join. Qed.
|
Proof. hauto lq:on use:Pars.PairCong unfold:join. Qed.
|
||||||
|
|
||||||
|
Lemma AppCong n (a0 a1 b0 b1 : Tm n) :
|
||||||
|
join a0 a1 ->
|
||||||
|
join b0 b1 ->
|
||||||
|
join (App a0 b0) (App a1 b1).
|
||||||
|
Proof. hauto lq:on use:Pars.AppCong. Qed.
|
||||||
|
|
||||||
|
Lemma AbsCong n (a b : Tm (S n)) :
|
||||||
|
join a b ->
|
||||||
|
join (Abs a) (Abs b).
|
||||||
|
Proof. hauto lq:on use:Pars.AbsCong. Qed.
|
||||||
|
|
||||||
|
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
|
||||||
|
join a b -> join (ren_Tm ξ a) (ren_Tm ξ b).
|
||||||
|
Proof.
|
||||||
|
induction 1; hauto lq:on use:Pars.renaming.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma weakening n (a b : Tm n) :
|
||||||
|
join a b -> join (ren_Tm shift a) (ren_Tm shift b).
|
||||||
|
Proof.
|
||||||
|
apply renaming.
|
||||||
|
Qed.
|
||||||
|
|
||||||
Lemma FromPar n (a b : Tm n) :
|
Lemma FromPar n (a b : Tm n) :
|
||||||
Par.R a b ->
|
Par.R a b ->
|
||||||
join a b.
|
join a b.
|
||||||
|
@ -2535,6 +2569,22 @@ Module Join.
|
||||||
Qed.
|
Qed.
|
||||||
End Join.
|
End Join.
|
||||||
|
|
||||||
|
Lemma abs_eq n a (b : Tm n) :
|
||||||
|
join (Abs a) b <-> join a (App (ren_Tm shift b) (VarTm var_zero)).
|
||||||
|
Proof.
|
||||||
|
split.
|
||||||
|
- move => /Join.weakening h.
|
||||||
|
have {h} : join (App (ren_Tm shift (Abs a)) (VarTm var_zero)) (App (ren_Tm shift b) (VarTm var_zero))
|
||||||
|
by hauto l:on use:Join.AppCong, join_refl.
|
||||||
|
simpl.
|
||||||
|
move => ?. apply : join_transitive; eauto.
|
||||||
|
apply join_symmetric. apply Join.FromPar.
|
||||||
|
apply : Par.AppAbs'; eauto using Par.refl. by asimpl.
|
||||||
|
- move /Join.AbsCong.
|
||||||
|
move /join_transitive. apply.
|
||||||
|
apply join_symmetric. apply Join.FromPar. apply Par.AppEta. apply Par.refl.
|
||||||
|
Qed.
|
||||||
|
|
||||||
Lemma pair_eq n (a0 a1 b : Tm n) :
|
Lemma pair_eq n (a0 a1 b : Tm n) :
|
||||||
join (Pair a0 a1) b <-> join a0 (Proj PL b) /\ join a1 (Proj PR b).
|
join (Pair a0 a1) b <-> join a0 (Proj PL b) /\ join a1 (Proj PR b).
|
||||||
Proof.
|
Proof.
|
||||||
|
|
Loading…
Add table
Reference in a new issue