pair-eta/theories/compile.v

182 lines
5.3 KiB
Coq
Raw Normal View History

2025-01-20 15:33:46 -05:00
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax fp_red.
Require Import ssreflect ssrbool.
From Hammer Require Import Tactics.
From stdpp Require Import relations (rtc(..)).
2025-01-20 15:33:46 -05:00
Module Compile.
Fixpoint F {n} (a : Tm n) : Tm n :=
match a with
| TBind p A B => Pair (Pair (Const p) (F A)) (Abs (F B))
| Const k => Const k
| Univ i => Univ i
| Abs a => Abs (F a)
| App a b => App (F a) (F b)
| VarTm i => VarTm i
| Pair a b => Pair (F a) (F b)
| Proj t a => Proj t (F a)
2025-01-20 16:28:44 -05:00
| Bot => Bot
2025-01-20 15:33:46 -05:00
end.
Lemma renaming n m (a : Tm n) (ξ : fin n -> fin m) :
F (ren_Tm ξ a)= ren_Tm ξ (F a).
Proof. move : m ξ. elim : n / a => //=; scongruence. Qed.
#[local]Hint Rewrite Compile.renaming : compile.
Lemma morphing n m (a : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
(forall i, ρ0 i = F (ρ1 i)) ->
subst_Tm ρ0 (F a) = F (subst_Tm ρ1 a).
Proof.
move : m ρ0 ρ1. elim : n / a => n//=.
- hauto lq:on inv:option rew:db:compile unfold:funcomp.
- hauto lq:on rew:off.
- hauto lq:on rew:off.
- hauto lq:on.
- hauto lq:on inv:option rew:db:compile unfold:funcomp.
Qed.
Lemma substing n b (a : Tm (S n)) :
subst_Tm (scons (F b) VarTm) (F a) = F (subst_Tm (scons b VarTm) a).
Proof.
apply morphing.
case => //=.
Qed.
End Compile.
#[export] Hint Rewrite Compile.renaming Compile.morphing : compile.
Module Join.
Definition R {n} (a b : Tm n) := join (Compile.F a) (Compile.F b).
Lemma BindInj n p0 p1 (A0 A1 : Tm n) B0 B1 :
R (TBind p0 A0 B0) (TBind p1 A1 B1) -> p0 = p1 /\ R A0 A1 /\ R B0 B1.
Proof.
rewrite /R /= !join_pair_inj.
move => [[/join_const_inj h0 h1] h2].
apply abs_eq in h2.
evar (t : Tm (S n)).
have : join (App (ren_Tm shift (Abs (Compile.F B1))) (VarTm var_zero)) t by
apply Join.FromPar; apply Par.AppAbs; auto using Par.refl.
subst t. rewrite -/ren_Tm.
move : h2. move /join_transitive => /[apply]. asimpl => h2.
tauto.
Qed.
Lemma UnivInj n i j : R (Univ i : Tm n) (Univ j) -> i = j.
Proof. hauto l:on use:join_univ_inj. Qed.
2025-01-20 16:49:47 -05:00
Lemma transitive n (a b c : Tm n) :
R a b -> R b c -> R a c.
Proof. hauto l:on use:join_transitive unfold:R. Qed.
Lemma symmetric n (a b : Tm n) :
R a b -> R b a.
Proof. hauto l:on use:join_symmetric. Qed.
Lemma reflexive n (a : Tm n) :
R a a.
Proof. hauto l:on use:join_refl. Qed.
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
R a b -> R (subst_Tm ρ a) (subst_Tm ρ b).
Proof.
rewrite /R.
rewrite /join.
move => [C [h0 h1]].
repeat (rewrite <- Compile.morphing with (ρ0 := funcomp Compile.F ρ); last by reflexivity).
hauto lq:on use:join_substing.
Qed.
2025-01-20 15:33:46 -05:00
End Join.
Module Equiv.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(***************** Beta ***********************)
| AppAbs a b :
R (App (Abs a) b) (subst_Tm (scons b VarTm) a)
| ProjPair p a b :
R (Proj p (Pair a b)) (if p is PL then a else b)
(****************** Eta ***********************)
| AppEta a :
R a (Abs (App (ren_Tm shift a) (VarTm var_zero)))
| PairEta a :
R a (Pair (Proj PL a) (Proj PR a))
(*************** Congruence ********************)
| Var i : R (VarTm i) (VarTm i)
| AbsCong a b :
R a b ->
R (Abs a) (Abs b)
| AppCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App a0 b0) (App a1 b1)
| PairCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Pair a0 b0) (Pair a1 b1)
| ProjCong p a0 a1 :
R a0 a1 ->
R (Proj p a0) (Proj p a1)
| BindCong p A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
R (TBind p A0 B0) (TBind p A1 B1)
| UnivCong i :
R (Univ i) (Univ i).
End Equiv.
Module EquivJoin.
Lemma FromEquiv n (a b : Tm n) : Equiv.R a b -> Join.R a b.
Proof.
move => h. elim : n a b /h => n.
- move => a b.
rewrite /Join.R /join /=.
eexists. split. apply relations.rtc_once.
apply Par.AppAbs; auto using Par.refl.
rewrite Compile.substing.
apply relations.rtc_refl.
- move => p a b.
apply Join.FromPar.
simpl. apply : Par.ProjPair'; auto using Par.refl.
case : p => //=.
- move => a. apply Join.FromPar => /=.
apply : Par.AppEta'; auto using Par.refl.
by autorewrite with compile.
- move => a. apply Join.FromPar => /=.
apply : Par.PairEta; auto using Par.refl.
- hauto l:on use:Join.FromPar, Par.Var.
- hauto lq:on use:Join.AbsCong.
- qauto l:on use:Join.AppCong.
- qauto l:on use:Join.PairCong.
- qauto use:Join.ProjCong.
- rewrite /Join.R => p A0 A1 B0 B1 _ hA _ hB /=.
sfirstorder use:Join.PairCong,Join.AbsCong,Join.FromPar,Par.ConstCong.
- hauto l:on.
Qed.
End EquivJoin.
2025-01-20 16:49:47 -05:00
Lemma compile_rpar n (a b : Tm n) : RPar'.R a b -> RPar'.R (Compile.F a) (Compile.F b).
Proof.
move => h. elim : n a b /h.
- move => n a0 a1 b0 b1 ha iha hb ihb /=.
rewrite -Compile.substing.
apply RPar'.AppAbs => //.
- hauto q:on use:RPar'.ProjPair'.
- qauto ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
- hauto lq:on ctrs:RPar'.R.
Qed.
Lemma compile_rpars n (a b : Tm n) : rtc RPar'.R a b -> rtc RPar'.R (Compile.F a) (Compile.F b).
Proof. induction 1; hauto lq:on ctrs:rtc use:compile_rpar. Qed.