nbe-kripke-racket/nbe.rkt
Yiyun Liu 3631f31346
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
Make the algorithm lazier
2025-04-30 01:35:39 -04:00

138 lines
3.8 KiB
Racket
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#lang racket
;; Grammar (Λ)
;; t := λ t | app t t | i
;; Domain
;; D := neu D_ne | fun [(var -> var) -> D → D]
;; D_ne := var i | app D_ne D
(define (tm? a)
(match a
['zero true]
[`(succ ,a) (tm? a)]
[`(if-zero ,a ,b ,c) (and (tm? a) (tm? b) (tm? c))]
[`(λ ,a) (tm? a)]
[`(app ,a ,b) (and (tm? a) (tm? b))]
[`(var ,i) (exact-nonnegative-integer? i)]
[_ false]))
(define-syntax-rule (ap a b)
(match (force a)
[`(fun ,f) (force (f identity b))]
[`(neu ,u) `(neu (app ,u ,b))]
[_ (error "ap: type error")]))
(define-syntax-rule (ifz a b c)
(match (force a)
['zero (force b)]
[`(succ ,u) (ap c u)]
[`(neu ,u) `(neu (if-zero ,u ,b ,c))]))
(define compose-ren compose)
(define (compose-ren-sub ξ ρ)
(compose (curry ren-dom ξ) ρ))
(define-syntax-rule (ext ρ a)
(lambda (i)
(if (zero? i)
a
(ρ (- i 1)))))
(define (ren-ne-dom ξ a)
(match a
[`(var ,i) `(var ,(ξ i))]
[`(app ,a ,b) `(app ,(ren-ne-dom ξ a) ,(ren-dom ξ b))]
[`(if-zero ,a ,b ,c) `(if-zero ,(ren-ne-dom ξ a) ,(ren-dom ξ b) ,(ren-dom ξ c))]))
(define (ren-dom ξ a)
(delay (match (force a)
['zero 'zero]
[`(succ ,a) `(succ ,(ren-dom ξ a))]
[`(neu ,a) `(neu ,(ren-ne-dom ξ a))]
[`(fun ,f) `(fun ,(λ (ξ0 α) (f (compose-ren ξ0 ξ) α)))])))
(define-syntax-rule (interp-fun a ρ)
(list 'fun (λ (ξ x) (interp a (ext (compose-ren-sub ξ ρ) x)))))
(define (interp a ρ)
(delay (match a
[`(var ,i) (force (ρ i))]
['zero 'zero]
[`(succ ,a) `(succ ,(interp a ρ))]
[`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))]
[`(λ ,a) (interp-fun a ρ)]
[`(app ,a ,b) (ap (interp a ρ) (interp b ρ))])))
(define (reify a)
(match (force a)
['zero 'zero]
[`(succ ,a) `(succ ,(reify a))]
[`(fun ,f) (list 'λ (reify (f (curry + 1) '(neu (var 0)))))]
[`(neu ,a) (reify-neu a)]))
(define (extract-body a)
(match a
[`(λ ,a) a]
[_ (error "reify-neu: not reifiable")]))
(define (reify-neu a)
(match a
[`(if-zero ,a ,b ,c) (list 'if (reify-neu a) (reify b) (extract-body (reify c)))]
[`(app ,u ,v) (list 'app (reify-neu u) (reify v))]
[`(var ,i) a]))
(define (idsub i) `(neu (var ,i)))
(define (normalize a)
(reify (interp a idsub)))
(define (subst ρ a)
(match a
[`(var ,i) (ρ i)]
[`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))]
[`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ)
'(var 0)) a))]))
(define (idsub-tm i) `(var ,i))
(define (subst1 b a)
(subst (ext idsub-tm b) a))
(define (eval-tm a)
(match a
[(list 'var _) a]
[(list 'λ a) `(λ ,(eval-tm a))]
[(list 'app a b)
(match (eval-tm a)
[(list 'λ a) (eval-tm (subst1 b a))]
[v `(app ,v ,(eval-tm b))])]))
(define (eval-tm-strict a)
(match a
[(list 'var _) a]
[(list 'λ a) `(λ ,(eval-tm-strict a))]
[(list 'app a b)
(match (eval-tm-strict a)
[(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))]
[v `(app ,v ,(eval-tm-strict b))])]))
;; Coquand's algorithm but for β-normal forms
(define (η-eq? a b)
(match (list a b)
['(zero zero) true]
[`((succ ,a) (succ ,b)) (η-eq? a b)]
[`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0))
(and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))]
[`((λ ,a) (λ ,b)) (η-eq? a b)]
[`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))]
[`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)]
[`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))]
[`((var ,i) (var ,j)) (eqv? i j)]
[_ false]))
(define (βη-eq? a b)
(η-eq? (normalize a) (normalize b)))
(define (β-eq? a b)
(equal? (normalize a) (normalize b)))
(provide eval-tm eval-tm-strict reify interp normalize tm? η-eq? βη-eq? β-eq?)