#lang typed/racket (require typed/rackunit "nbe.rkt") (define-syntax tm-app (syntax-rules () [(tm-app a) a] [(tm-app a b c ...) (tm-app `(app ,a ,b) c ...)])) (define-syntax-rule (tm-var a) `(var ,a)) (define-syntax-rule (tm-abs a) `(λ ,a)) (: tm-id Term) (define tm-id '(λ (var 0))) (: tm-fst Term) (define tm-fst '(λ (λ (var 1)))) (: tm-snd Term) (define tm-snd '(λ (λ (var 0)))) (: tm-pair Term) (define tm-pair `(λ (λ (λ ,(tm-app '(var 0) '(var 2) '(var 1)))))) (: tm-fix Term) (define tm-fix (let ([g (tm-abs (tm-app (tm-var 1) (tm-app (tm-var 0) (tm-var 0))))]) (tm-abs (tm-app g g)))) (: tm-zero Term) (define tm-zero tm-snd) (: tm-suc (-> Term Term)) (define (tm-suc a) (tm-abs (tm-abs (tm-app (tm-var 1) (tm-app a (tm-var 1) (tm-var 0)))))) (: tm-add (-> Term Term Term)) (define (tm-add a b) (tm-abs (tm-abs (tm-app b (tm-var 1) (tm-app a (tm-var 1) (tm-var 0)))))) (: tm-ind (-> Term Term Term Term)) (define (tm-ind a b c) `(ind ,a ,b ,c)) (: tm-padd (-> Term Term Term)) (define (tm-padd a b) (tm-app (tm-ind a tm-id (tm-abs (tm-psuc (tm-app (tm-var 1) (tm-var 0))))) b)) (: tm-compose (-> Term Term Term)) (define (tm-compose a b) (tm-abs (tm-app a (tm-app b (tm-var 0))))) (: tm-mult (-> Term Term Term)) (define (tm-mult a b) (tm-compose a b)) (: tm-nat (-> V Term)) (define (tm-nat n) (if (positive? n) (tm-suc (tm-nat (- n 1))) tm-zero)) (: tm-const Term) (define tm-const tm-fst) (: tm-loop Term) (define tm-loop (let ([g (tm-abs (tm-app (tm-var 0) (tm-var 0)))]) (tm-app g g))) (: tm-nat-to-pnat Term) (define tm-nat-to-pnat (tm-abs (tm-app (tm-var 0) (tm-abs '(succ (var 0))) 'zero))) (: tm-pnat (-> V Term)) (define (tm-pnat n) (if (positive? n) `(succ ,(tm-pnat (- n 1))) 'zero)) (: tm-psuc (-> Term Term)) (define (tm-psuc a) `(succ ,a)) (check-equal? (normalize `(app ,tm-id ,tm-id)) tm-id) (check βη-eq? `(app ,tm-id (U 0)) '(U 0)) (check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-snd)) tm-fst) (check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-fst)) tm-id) (check-equal? (normalize (tm-app tm-snd (tm-app tm-pair tm-id tm-fst) tm-fst)) tm-fst) (check-equal? (normalize (tm-add (tm-nat 499) (tm-nat 777))) (normalize (tm-add (tm-nat 777) (tm-nat 499)))) (check-equal? (normalize (tm-app tm-const (tm-nat 0) tm-loop)) (normalize (tm-nat 0))) (check-equal? (normalize (tm-app tm-nat-to-pnat (tm-nat 10))) (tm-pnat 10)) (check-equal? (normalize `(ind ,(tm-pnat 3) ,(tm-pnat 0) (var 1))) (tm-pnat 2)) (check-equal? (normalize `(ind ,(tm-pnat 3) ,tm-loop (var 1))) (tm-pnat 2)) (check-equal? (normalize (tm-padd (tm-pnat 1) '(succ (var 0)))) '(succ (succ (var 0)))) (check-equal? (normalize (tm-padd (tm-pnat 10000) (tm-pnat 2000))) (tm-pnat 12000)) (check βη-eq? (tm-padd (tm-pnat 10000) (tm-pnat 2000)) (tm-pnat 12000)) (check βη-eq? (tm-abs (tm-app (tm-var 1) (tm-var 0))) (tm-app tm-id (tm-var 0))) (check βη-eq? `(Π (U 0) (Π (var 0) ,(tm-app tm-id '(var 1)))) '(Π (U 0) (Π (var 0) (var 1)))) (check-false (βη-eq? '(U 0) '(var 0)))