#lang typed/racket ;; Grammar (Λ) ;; t := λ t | app t t | i (define-type denv (-> V (Promise D))) (define-type V Nonnegative-Integer) (define-type Term (∪ 'zero (List 'succ Term) (List 'var V) (List 'λ Term) (List 'app Term Term) (List 'ind Term Term Term))) (define-type D (∪ 'zero (List 'succ (Promise D)) (List 'fun (-> (Promise D) D)) (List 'fun2 (-> (Promise D) (Promise D) D)) (List 'neu D-ne) ;; (List 'ind (-> (Promise D) (Promise D) D)) )) (define-type D-ne (∪ (List 'app D-ne D) (List 'idx V))) (: ext (-> denv (Promise D) denv)) (define (ext ρ a) (lambda (i) (if (zero? i) a (ρ (- i 1))))) (define-syntax-rule (ap a b) (match a [`(fun ,f) (f (delay b))] [`(neu ,u) `(neu (app ,u ,b))])) (: interp-fun (-> Term denv D)) (define (interp-fun a ρ) (list 'fun (λ (x) (interp a (ext ρ x))))) (: interp-ind (-> D (Promise D) (Promise D) denv D)) (define (interp-ind a b c ρ) (match a [_ (error "unimplemented")])) (: interp (-> Term denv D)) (define (interp a ρ) (match a [`(var ,i) (force (ρ i))] ['zero 'zero] [`(succ ,a) `(succ ,(delay (interp a ρ)))] [`(ind ,a ,b ,c) (interp-ind (interp a ρ) (delay (interp b ρ)) (delay (interp c ρ)) ρ)] [`(λ ,a) (interp-fun a ρ)] [`(app ,a ,b) (ap (interp a ρ) (interp b ρ))])) ;; Domain ;; D := neu D_ne | fun [(var -> var) -> D → D] ;; D_ne := var i | app D_ne D ;; (: interp (-> Term (-> Term))) ;; (define (interp a ρ) ;; (delay (match a ;; [`(var ,i) (force (ρ i))] ;; ['zero 'zero] ;; [`(succ ,a) `(succ ,(interp a ρ))] ;; [`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))] ;; [`(λ ,a) (interp-fun a ρ)] ;; [`(app ,a ,b) (ap (interp a ρ) (interp b ρ))]))) (: reify (-> V D Term)) (define (reify n a) (match a ['zero 'zero] [`(succ ,a) `(succ ,(reify n (force a)))] [`(fun ,f) (list 'λ (reify (+ n 1) (f (delay `(neu (idx ,n))))))] [`(neu ,a) (reify-neu n a)])) ;; (define (extract-body a) ;; (match a ;; [`(λ ,a) a] ;; [_ (error "reify-neu: not reifiable")])) (: reify-neu (-> V D-ne Term)) (define (reify-neu n a) (match a ;; [`(if-zero ,a ,b ,c) (list 'if (reify-neu n a) (reify n b) (extract-body (reify n c)))] [`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))] [`(idx ,i) (list 'var (max 0 (- n (+ i 1))))])) (: idsub (-> V V D)) (define (idsub s i) `(neu (idx ,(max 0 (- s (+ i 1)))))) (: scope (-> Term V)) (define (scope a) (match a ['zero 0] [`(succ ,a) (scope a)] (`(ind ,a ,b ,c) (max (scope a) (scope b) (scope c))) [`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))] [`(λ ,a) (max 0 (- (scope a) 1))] [`(app ,a ,b) (max (scope a) (scope b))] [`(var ,i) (+ i 1)])) (: normalize (-> Term Term)) (define (normalize a) (let ([sa (scope a)]) (reify sa (interp a (λ (x) (delay (idsub sa x))))))) ;; (define (subst ρ a) ;; (match a ;; [`(var ,i) (ρ i)] ;; [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))] ;; [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ) ;; '(var 0)) a))])) ;; (define (idsub-tm i) `(var ,i)) ;; (define (subst1 b a) ;; (subst (ext idsub-tm b) a)) ;; (define (eval-tm a) ;; (match a ;; [(list 'var _) a] ;; [(list 'λ a) `(λ ,(eval-tm a))] ;; [(list 'app a b) ;; (match (eval-tm a) ;; [(list 'λ a) (eval-tm (subst1 b a))] ;; [v `(app ,v ,(eval-tm b))])])) ;; (define (eval-tm-strict a) ;; (match a ;; [(list 'var _) a] ;; [(list 'λ a) `(λ ,(eval-tm-strict a))] ;; [(list 'app a b) ;; (match (eval-tm-strict a) ;; [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))] ;; [v `(app ,v ,(eval-tm-strict b))])])) ;; ;; Coquand's algorithm but for β-normal forms ;; (: η-eq? (-> Term Term Boolean)) ;; (define (η-eq? a b) ;; (match (list a b) ;; ['(zero zero) true] ;; [`((succ ,a) (succ ,b)) (η-eq? a b)] ;; [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0)) ;; (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))] ;; [`((λ ,a) (λ ,b)) (η-eq? a b)] ;; [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))] ;; [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)] ;; [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))] ;; [`((var ,i) (var ,j)) (eqv? i j)] ;; [_ false])) ;; (define (βη-eq? a b) ;; (η-eq? (normalize a) (normalize b))) (: β-eq? (-> Term Term Boolean)) (define (β-eq? a b) (equal? (normalize a) (normalize b))) (provide reify interp normalize β-eq? Term D V)