#lang racket ;; Grammar (Λ) ;; t := λ t | app t t | i ;; Domain ;; D ≃ neu D_ne | fun [D → D] ;; D_ne = var i | app D_ne D ;; Define as we go (define (ap a b) (match a [`(fun ,f) (f identity b)] [`(neu ,u) `(neu (app ,u ,b))])) (define compose-ren compose) (define (compose-ren-sub ξ ρ) (compose (curry ren-dom ξ) ρ)) (define (ext ρ a) (lambda (i) (if (zero? i) a (ρ (- i 1))))) (define (ren-ne-dom ξ a) (match a [`(var ,i) `(var ,(ξ i))] [`(app ,a ,b) `(app ,(ren-ne-dom ξ a) ,(ren-dom ξ b))])) (define (ren-dom ξ a) (match a [`(neu ,a) `(neu ,(ren-ne-dom ξ a))] [`(fun ,f) `(fun ,(λ (ξ0 α) (f (compose-ren ξ0 ξ) α)))])) (define (interp a ρ) (match a [`(var ,i) (ρ i)] [`(λ ,a) (list 'fun (λ (ξ x) (interp a (ext (compose-ren-sub ξ ρ) x))))] [`(app ,a ,b) (ap (interp a ρ) (interp b ρ))])) (define (reify a) (match a [`(fun ,f) (list 'λ (reify (f (curry + 1) '(neu (var 0)))))] [`(neu ,a) (reify-neu a)])) (define (reify-neu a) (match a [`(app ,u ,v) (list 'app (reify-neu u) (reify a))] [`(var ,i) a])) (define (idsub i) `(neu (var ,i))) (define (normalize a) (reify (interp a idsub))) (provide normalize)