#lang racket ;; Grammar (Λ) ;; t := λ t | app t t | i ;; Domain ;; D := neu D_ne | fun [(var -> var) -> D → D] ;; D_ne := var i | app D_ne D (define (tm? a) (match a ['zero true] [`(succ ,a) (tm? a)] [`(if-zero ,a ,b ,c) (and (tm? a) (tm? b) (tm? c))] [`(λ ,a) (tm? a)] [`(app ,a ,b) (and (tm? a) (tm? b))] [`(var ,i) (exact-nonnegative-integer? i)] [_ false])) (define-syntax-rule (ap a b) (match (force a) [`(fun ,f) (force (f identity b))] [`(neu ,u) `(neu (app ,u ,b))] [_ (error "ap: type error")])) (define-syntax-rule (ifz a b c) (match (force a) ['zero (force b)] [`(succ ,u) (ap c u)] [`(neu ,u) `(neu (if-zero ,u ,b ,c))])) (define compose-ren compose) (define (compose-ren-sub ξ ρ) (compose (curry ren-dom ξ) ρ)) (define-syntax-rule (ext ρ a) (lambda (i) (if (zero? i) a (ρ (- i 1))))) (define (ren-ne-dom ξ a) (match a [`(var ,i) `(var ,(ξ i))] [`(app ,a ,b) `(app ,(ren-ne-dom ξ a) ,(ren-dom ξ b))] [`(if-zero ,a ,b ,c) `(if-zero ,(ren-ne-dom ξ a) ,(ren-dom ξ b) ,(ren-dom ξ c))])) (define (ren-dom ξ a) (delay (match (force a) ['zero 'zero] [`(succ ,a) `(succ ,(ren-dom ξ a))] [`(neu ,a) `(neu ,(ren-ne-dom ξ a))] [`(fun ,f) `(fun ,(λ (ξ0 α) (f (compose-ren ξ0 ξ) α)))]))) (define-syntax-rule (interp-fun a ρ) (list 'fun (λ (ξ x) (interp a (ext (compose-ren-sub ξ ρ) x))))) (define (interp a ρ) (delay (match a [`(var ,i) (force (ρ i))] ['zero 'zero] [`(succ ,a) `(succ ,(interp a ρ))] [`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))] [`(λ ,a) (interp-fun a ρ)] [`(app ,a ,b) (ap (interp a ρ) (interp b ρ))]))) (define (reify a) (match (force a) ['zero 'zero] [`(succ ,a) `(succ ,(reify a))] [`(fun ,f) (list 'λ (reify (f (curry + 1) '(neu (var 0)))))] [`(neu ,a) (reify-neu a)])) (define (extract-body a) (match a [`(λ ,a) a] [_ (error "reify-neu: not reifiable")])) (define (reify-neu a) (match a [`(if-zero ,a ,b ,c) (list 'if (reify-neu a) (reify b) (extract-body (reify c)))] [`(app ,u ,v) (list 'app (reify-neu u) (reify v))] [`(var ,i) a])) (define (idsub i) `(neu (var ,i))) (define (normalize a) (reify (interp a idsub))) (define (subst ρ a) (match a [`(var ,i) (ρ i)] [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))] [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ) '(var 0)) a))])) (define (idsub-tm i) `(var ,i)) (define (subst1 b a) (subst (ext idsub-tm b) a)) (define (eval-tm a) (match a [(list 'var _) a] [(list 'λ a) `(λ ,(eval-tm a))] [(list 'app a b) (match (eval-tm a) [(list 'λ a) (eval-tm (subst1 b a))] [v `(app ,v ,(eval-tm b))])])) (define (eval-tm-strict a) (match a [(list 'var _) a] [(list 'λ a) `(λ ,(eval-tm-strict a))] [(list 'app a b) (match (eval-tm-strict a) [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))] [v `(app ,v ,(eval-tm-strict b))])])) ;; Coquand's algorithm but for β-normal forms (define (η-eq? a b) (match (list a b) ['(zero zero) true] [`((succ ,a) (succ ,b)) (η-eq? a b)] [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0)) (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))] [`((λ ,a) (λ ,b)) (η-eq? a b)] [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))] [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)] [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))] [`((var ,i) (var ,j)) (eqv? i j)] [_ false])) (define (βη-eq? a b) (η-eq? (normalize a) (normalize b))) (define (β-eq? a b) (equal? (normalize a) (normalize b))) (provide eval-tm eval-tm-strict reify interp normalize tm? η-eq? βη-eq? β-eq?)