#lang typed/racket ;; Grammar (Λ) ;; t := λ t | app t t | i (define-type denv (-> V (Promise D))) (define-type V Nonnegative-Integer) (define-type Term (∪ 'zero 'nat (List 'succ Term) (List 'var V) (List 'λ Term) (List 'app Term Term) (List 'ind Term Term Term) (List 'Π Term Term) (List 'U V))) (define-type D (∪ 'zero (List 'Π (Promise D) (-> (Promise D) D)) (List 'succ (Promise D)) (List 'fun (-> (Promise D) D)) (List 'neu D-ne) (List 'U V))) (define-type D-ne (∪ (List 'app D-ne D) (List 'idx V) (List 'ind D-ne D (-> (Promise D) (Promise D) D)))) (: ext (All (A) (-> (-> V A) A (-> V A)))) (define (ext ρ a) (lambda (i) (if (zero? i) a (ρ (- i 1))))) (: interp-fun (-> Term denv (-> (Promise D) D))) (define (interp-fun a ρ) (λ (x) (interp a (ext ρ x)))) (: interp-fun2 (-> Term denv (-> (Promise D) (Promise D) D))) (define (interp-fun2 a ρ) (λ (x y) (interp a (ext (ext ρ x) y)))) (: interp-ind (-> D (Promise D) (-> (Promise D) (Promise D) D) D)) (define (interp-ind a b c) (match a [`(neu ,u) `(neu (ind ,u ,(force b) ,c))] ['zero (force b)] [`(succ ,a) (c a (delay (interp-ind (force a) b c)))] [_ (error "type-error: ind")])) (: ap (-> Term Term denv D)) (define (ap a b ρ) (match (interp a ρ) [`(fun ,f) (f (delay (interp b ρ)))] [`(neu ,u) `(neu (app ,u ,(interp b ρ)))] [_ (error "type-error: ap")])) (: interp (-> Term denv D)) (define (interp a ρ) (match a [`(U ,_) a] [`(Π ,A ,B) `(Π ,(delay (interp A ρ)) ,(interp-fun B ρ))] [`(var ,i) (force (ρ i))] ['zero 'zero] [`(succ ,a) `(succ ,(delay (interp a ρ)))] [`(ind ,a ,b ,c) (interp-ind (interp a ρ) (delay (interp b ρ)) (interp-fun2 c ρ))] [`(λ ,a) (list 'fun (interp-fun a ρ))] [`(app ,a ,b) (ap a b ρ)])) (: reify (-> V D Term)) (define (reify n a) (match a [`(Π ,A ,B) `(Π ,(reify n (force A)) ,(reify (+ n 1) (B (delay `(neu (idx ,n))))))] ['zero 'zero] [`(succ ,a) `(succ ,(reify n (force a)))] [`(U ,_) a] [`(fun ,f) (list 'λ (reify (+ n 1) (f (delay `(neu (idx ,n))))))] [`(neu ,a) (reify-neu n a)])) (: var-to-idx (-> V V V)) (define (var-to-idx s v) (let ([ret (- s (+ v 1))]) (if (< ret 0) (error "variable to index conversion failed") ret))) (: reify-neu (-> V D-ne Term)) (define (reify-neu n a) (match a [`(ind ,a ,b ,c) (list 'ind (reify-neu n a) (reify n b) (reify (+ n 2) (c (delay `(neu (idx ,n))) (delay `(neu (idx ,(+ 1 n)))))))] [`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))] [`(idx ,i) (list 'var (var-to-idx n i))])) (: idsub (-> V V D)) (define (idsub s i) `(neu (idx ,(var-to-idx s i)))) (: scope (-> Term V)) (define (scope a) (match a [`(Π ,A ,B) (max (scope A) (- (scope B) 2))] [`(U ,_) 0] ['zero 0] [`(succ ,a) (scope a)] (`(ind ,a ,b ,c) (max (scope a) (scope b) (- (scope c) 2))) [`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))] [`(λ ,a) (max 0 (- (scope a) 1))] [`(app ,a ,b) (max (scope a) (scope b))] [`(var ,i) (+ i 1)])) (: normalize (-> Term Term)) (define (normalize a) (let ([sa (scope a)]) (reify sa (interp a (λ (x) (delay (idsub sa x))))))) (: up (-> V (-> V Term) (-> V Term))) (define (up n ρ) (ext (λ ([x : V]) (subst (λ (i) `(var ,(+ i n))) (ρ x))) '(var 0))) (: subst (-> (-> V Term) Term Term)) (define (subst ρ a) (match a [`(U ,_) a] [`(Π ,A ,B) `(Π ,(subst ρ A) ,(subst (up 1 ρ) B))] [`(var ,i) (ρ i)] [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))] [`(λ ,a) `(λ ,(subst (up 1 ρ) a))] ['zero 'zero] [`(succ ,a) `(succ ,(subst ρ a))] [`(ind ,a ,b ,c) `(ind ,(subst ρ a) ,(subst ρ b) ,(subst (up 2 ρ) c))])) (: idsub-tm (-> V Term)) (define (idsub-tm i) `(var ,i)) (: subst1 (-> Term Term Term)) (define (subst1 b a) (subst (ext idsub-tm b) a)) ;; Coquand's algorithm but for β-normal forms (: η-eq? (-> Term Term Boolean)) (define (η-eq? a b) (match (list a b) [`((U ,i) (U ,j)) (eqv? i j) ] [`((Π ,A0 ,B0) (Π ,A1 ,B1)) (and (η-eq? A0 A1) (η-eq? B0 B1))] ['(zero zero) true] [`((succ ,a) (succ ,b)) (η-eq? a b)] [`((ind ,a ,b ,c) (ind ,a0 ,b0 ,c0)) (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))] [`((λ ,a) (λ ,b)) (η-eq? a b)] [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))] [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)] [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))] [`((var ,i) (var ,j)) (eqv? i j)] [_ false])) (: βη-eq? (-> Term Term Boolean)) (define (βη-eq? a b) (η-eq? (normalize a) (normalize b))) (: β-eq? (-> Term Term Boolean)) (define (β-eq? a b) (equal? (normalize a) (normalize b))) (provide reify interp normalize β-eq? Term D V βη-eq?)