#lang racket ;; Grammar (Λ) ;; t := λ t | app t t | i ;; Domain ;; D := neu D_ne | fun [(var -> var) -> D → D] ;; D_ne := var i | app D_ne D (define (tm? a) (match a ['zero true] [`(succ ,a) (tm? a)] [`(if-zero ,a ,b ,c) (and (tm? a) (tm? b) (tm? c))] [`(λ ,a) (tm? a)] [`(app ,a ,b) (and (tm? a) (tm? b))] [`(var ,i) (exact-nonnegative-integer? i)] [_ false])) (define-syntax-rule (ap a b) (match (force a) [`(fun ,f) (force (f b))] [`(neu ,u) `(neu (app ,u ,b))] [_ (error "ap: type error")])) (define-syntax-rule (ifz a b c) (match (force a) ['zero (force b)] [`(succ ,u) (ap c u)] [`(neu ,u) `(neu (if-zero ,u ,b ,c))])) (define-syntax-rule (ext ρ a) (lambda (i) (if (zero? i) a (ρ (- i 1))))) (define-syntax-rule (interp-fun a ρ) (list 'fun (λ (x) (interp a (ext ρ x))))) (define (interp a ρ) (delay (match a [`(var ,i) (force (ρ i))] ['zero 'zero] [`(succ ,a) `(succ ,(interp a ρ))] [`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))] [`(λ ,a) (interp-fun a ρ)] [`(app ,a ,b) (ap (interp a ρ) (interp b ρ))]))) (define (reify n a) (match (force a) ['zero 'zero] [`(succ ,a) `(succ ,(reify n a))] [`(fun ,f) (list 'λ (reify (+ n 1) (f `(neu (var ,n)))))] [`(neu ,a) (reify-neu n a)])) (define (extract-body a) (match a [`(λ ,a) a] [_ (error "reify-neu: not reifiable")])) (define (reify-neu n a) (match a [`(if-zero ,a ,b ,c) (list 'if (reify-neu n a) (reify n b) (extract-body (reify n c)))] [`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))] [`(var ,i) (list 'var (- n (+ i 1)))])) (define (idsub s i) `(neu (var ,(- s (+ i 1))))) (define (scope a) (match a ['zero 0] [`(succ ,a) (scope a)] [`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))] [`(λ ,a) (max 0 (- (scope a) 1))] [`(app ,a ,b) (max (scope a) (scope b))] [`(var ,i) (+ i 1)])) (define (normalize a) (let ([sa (scope a)]) (reify sa (interp a (curry idsub sa))))) (define (subst ρ a) (match a [`(var ,i) (ρ i)] [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))] [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ) '(var 0)) a))])) (define (idsub-tm i) `(var ,i)) (define (subst1 b a) (subst (ext idsub-tm b) a)) (define (eval-tm a) (match a [(list 'var _) a] [(list 'λ a) `(λ ,(eval-tm a))] [(list 'app a b) (match (eval-tm a) [(list 'λ a) (eval-tm (subst1 b a))] [v `(app ,v ,(eval-tm b))])])) (define (eval-tm-strict a) (match a [(list 'var _) a] [(list 'λ a) `(λ ,(eval-tm-strict a))] [(list 'app a b) (match (eval-tm-strict a) [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))] [v `(app ,v ,(eval-tm-strict b))])])) ;; Coquand's algorithm but for β-normal forms (define (η-eq? a b) (match (list a b) ['(zero zero) true] [`((succ ,a) (succ ,b)) (η-eq? a b)] [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0)) (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))] [`((λ ,a) (λ ,b)) (η-eq? a b)] [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))] [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)] [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))] [`((var ,i) (var ,j)) (eqv? i j)] [_ false])) (define (βη-eq? a b) (η-eq? (normalize a) (normalize b))) (define (β-eq? a b) (equal? (normalize a) (normalize b))) (provide eval-tm eval-tm-strict reify interp normalize tm? η-eq? βη-eq? β-eq?)