Merge branch 'typed-rkt'
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
This commit is contained in:
commit
fc5acfe9a0
3 changed files with 165 additions and 126 deletions
|
@ -1,4 +1,4 @@
|
|||
# Kripke-style untyped NbE in racket
|
||||
# untyped NbE in racket
|
||||
[](https://woodpecker.electriclam.com/repos/4)
|
||||
|
||||
An implementation of normalization by evaluation loosely based on [A
|
||||
|
@ -10,6 +10,3 @@ Since the implementation is untyped, the `normalize` function only
|
|||
gives you β-normal forms. However, you can get a little bit of
|
||||
βη-equivalence by invoking Coquand's algorithm (`η-eq?`) on
|
||||
β-normal forms.
|
||||
|
||||
A more efficient version of NbE based on de Bruijn levels (inverted de
|
||||
bruijn indices) can be found in the `debruijn-levels` branch.
|
||||
|
|
61
nbe-test.rkt
61
nbe-test.rkt
|
@ -1,6 +1,6 @@
|
|||
#lang racket
|
||||
#lang typed/racket
|
||||
|
||||
(require rackunit "nbe.rkt")
|
||||
(require typed/rackunit "nbe.rkt")
|
||||
|
||||
(define-syntax tm-app
|
||||
(syntax-rules ()
|
||||
|
@ -11,64 +11,85 @@
|
|||
(define-syntax-rule (tm-var a) `(var ,a))
|
||||
(define-syntax-rule (tm-abs a) `(λ ,a))
|
||||
|
||||
(: tm-id Term)
|
||||
(define tm-id '(λ (var 0)))
|
||||
|
||||
(: tm-fst Term)
|
||||
(define tm-fst '(λ (λ (var 1))))
|
||||
|
||||
(: tm-snd Term)
|
||||
(define tm-snd '(λ (λ (var 0))))
|
||||
|
||||
(: tm-pair Term)
|
||||
(define tm-pair `(λ (λ (λ ,(tm-app '(var 0) '(var 2) '(var 1))))))
|
||||
|
||||
(: tm-fix Term)
|
||||
(define tm-fix
|
||||
(let ([g (tm-abs (tm-app (tm-var 1) (tm-app (tm-var 0) (tm-var 0))))])
|
||||
(tm-abs (tm-app g g))))
|
||||
|
||||
(: tm-zero Term)
|
||||
(define tm-zero tm-snd)
|
||||
|
||||
(: tm-suc (-> Term Term))
|
||||
(define (tm-suc a) (tm-abs (tm-abs (tm-app (tm-var 1) (tm-app a (tm-var 1) (tm-var 0))))))
|
||||
|
||||
(: tm-add (-> Term Term Term))
|
||||
(define (tm-add a b)
|
||||
(tm-abs (tm-abs
|
||||
(tm-app b (tm-var 1) (tm-app a (tm-var 1) (tm-var 0))))))
|
||||
|
||||
(: tm-ind (-> Term Term Term Term))
|
||||
(define (tm-ind a b c)
|
||||
`(ind ,a ,b ,c))
|
||||
|
||||
(: tm-padd (-> Term Term Term))
|
||||
(define (tm-padd a b)
|
||||
(tm-app (tm-ind a tm-id (tm-abs (tm-psuc (tm-app (tm-var 1) (tm-var 0))))) b))
|
||||
|
||||
(: tm-compose (-> Term Term Term))
|
||||
(define (tm-compose a b)
|
||||
(tm-abs (tm-app a (tm-app b (tm-var 0)))))
|
||||
|
||||
(: tm-mult (-> Term Term Term))
|
||||
(define (tm-mult a b) (tm-compose a b))
|
||||
|
||||
(: tm-nat (-> V Term))
|
||||
(define (tm-nat n)
|
||||
(if (positive? n)
|
||||
(tm-suc (tm-nat (- n 1)))
|
||||
tm-zero))
|
||||
|
||||
(: tm-const Term)
|
||||
(define tm-const tm-fst)
|
||||
|
||||
(: tm-loop Term)
|
||||
(define tm-loop
|
||||
(let ([g (tm-abs (tm-app (tm-var 0) (tm-var 0)))])
|
||||
(tm-app g g)))
|
||||
|
||||
(: tm-nat-to-pnat Term)
|
||||
(define tm-nat-to-pnat
|
||||
(tm-abs (tm-app (tm-var 0) (tm-abs '(succ (var 0))) 'zero)))
|
||||
|
||||
(: tm-pnat (-> V Term))
|
||||
(define (tm-pnat n)
|
||||
(if (positive? n)
|
||||
`(succ ,(tm-pnat (- n 1)))
|
||||
'zero))
|
||||
|
||||
(define (tm-ifz a b c)
|
||||
`(if-zero ,a ,b ,c))
|
||||
|
||||
(: tm-psuc (-> Term Term))
|
||||
(define (tm-psuc a)
|
||||
`(succ ,a))
|
||||
|
||||
(define (tm-double m)
|
||||
(tm-app tm-fix
|
||||
(tm-abs (tm-abs (tm-ifz (tm-var 0) 'zero 'zero))) m ))
|
||||
|
||||
(define (tm-padd m n)
|
||||
(tm-app tm-fix
|
||||
(tm-abs (tm-abs (tm-abs (tm-ifz (tm-var 1) (tm-var 0) (tm-psuc (tm-app (tm-var 3) (tm-var 0) (tm-var 1))))))) m n))
|
||||
|
||||
(check-equal? (normalize `(app ,tm-id ,tm-id)) tm-id)
|
||||
(check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-snd)) tm-fst)
|
||||
(check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-fst)) tm-id)
|
||||
(check-equal? (normalize (tm-app tm-snd (tm-app tm-pair tm-id tm-fst) tm-fst)) tm-fst)
|
||||
(check-equal? (normalize (tm-add (tm-nat 499) (tm-nat 777))) (normalize (tm-add (tm-nat 777) (tm-nat 499))))
|
||||
(check-equal? (normalize (tm-mult (tm-nat 3) (tm-nat 2))) (normalize (tm-nat 6)))
|
||||
(check-equal? (normalize (tm-mult (tm-nat 11) (tm-nat 116))) (normalize (tm-nat 1276)))
|
||||
(check η-eq? (normalize (tm-add (tm-nat 499) (tm-nat 777))) (normalize (tm-add (tm-nat 777) (tm-nat 499))))
|
||||
(check βη-eq? (tm-mult (tm-nat 6) (tm-nat 7)) (tm-nat 42))
|
||||
(check βη-eq? '(if-zero (succ (succ zero)) zero (succ (succ (var 0)))) (tm-pnat 3))
|
||||
(check βη-eq? (tm-padd (tm-pnat 8) (tm-pnat 11)) (tm-pnat 19))
|
||||
(check βη-eq? (tm-padd (tm-pnat 2) (tm-psuc (tm-var 0))) '(succ (succ (succ (var 0)))))
|
||||
(check-equal? (normalize (tm-app tm-const (tm-nat 0) tm-loop)) (normalize (tm-nat 0)))
|
||||
(check-equal? (normalize (tm-app tm-nat-to-pnat (tm-nat 10))) (tm-pnat 10))
|
||||
(check-equal? (normalize `(ind ,(tm-pnat 3) ,(tm-pnat 0) (var 1))) (tm-pnat 2))
|
||||
(check-equal? (normalize `(ind ,(tm-pnat 3) ,tm-loop (var 1))) (tm-pnat 2))
|
||||
(check-equal? (normalize (tm-padd (tm-pnat 10000) (tm-pnat 2000)))
|
||||
(tm-pnat 12000))
|
||||
|
|
225
nbe.rkt
225
nbe.rkt
|
@ -1,138 +1,159 @@
|
|||
#lang racket
|
||||
#lang typed/racket
|
||||
;; Grammar (Λ)
|
||||
;; t := λ t | app t t | i
|
||||
|
||||
;; Domain
|
||||
;; D := neu D_ne | fun [(var -> var) -> D → D]
|
||||
;; D_ne := var i | app D_ne D
|
||||
(define-type denv (-> V (Promise D)))
|
||||
(define-type V Nonnegative-Integer)
|
||||
(define-type Term (∪ 'zero
|
||||
(List 'succ Term)
|
||||
(List 'var V)
|
||||
(List 'λ Term)
|
||||
(List 'app Term Term)
|
||||
(List 'ind Term Term Term)))
|
||||
|
||||
(define (tm? a)
|
||||
(match a
|
||||
['zero true]
|
||||
[`(succ ,a) (tm? a)]
|
||||
[`(if-zero ,a ,b ,c) (and (tm? a) (tm? b) (tm? c))]
|
||||
[`(λ ,a) (tm? a)]
|
||||
[`(app ,a ,b) (and (tm? a) (tm? b))]
|
||||
[`(var ,i) (exact-nonnegative-integer? i)]
|
||||
[_ false]))
|
||||
(define-type D (∪ 'zero
|
||||
(List 'succ (Promise D))
|
||||
(List 'fun (-> (Promise D) D))
|
||||
(List 'neu D-ne)))
|
||||
|
||||
(define-syntax-rule (ap a b)
|
||||
(match (force a)
|
||||
[`(fun ,f) (force (f identity b))]
|
||||
[`(neu ,u) `(neu (app ,u ,b))]
|
||||
[_ (error "ap: type error")]))
|
||||
(define-type D-ne (∪ (List 'app D-ne D)
|
||||
(List 'idx V)
|
||||
(List 'ind D-ne D (-> (Promise D) (Promise D) D))))
|
||||
|
||||
(define-syntax-rule (ifz a b c)
|
||||
(match (force a)
|
||||
['zero (force b)]
|
||||
[`(succ ,u) (ap c u)]
|
||||
[`(neu ,u) `(neu (if-zero ,u ,b ,c))]))
|
||||
|
||||
(define compose-ren compose)
|
||||
(define (compose-ren-sub ξ ρ)
|
||||
(compose (curry ren-dom ξ) ρ))
|
||||
(define-syntax-rule (ext ρ a)
|
||||
(lambda (i)
|
||||
(: ext (-> denv (Promise D) denv))
|
||||
(define (ext ρ a)
|
||||
(lambda (i)
|
||||
(if (zero? i)
|
||||
a
|
||||
(ρ (- i 1)))))
|
||||
|
||||
(define (ren-ne-dom ξ a)
|
||||
|
||||
|
||||
(: interp-fun (-> Term denv D))
|
||||
(define (interp-fun a ρ)
|
||||
(list 'fun (λ (x) (interp a (ext ρ x)))))
|
||||
|
||||
(: interp-fun2 (-> Term denv (-> (Promise D) (Promise D) D)))
|
||||
(define (interp-fun2 a ρ)
|
||||
(λ (x y) (interp a (ext (ext ρ x) y))))
|
||||
|
||||
(: interp-ind (-> D (Promise D) (-> (Promise D) (Promise D) D) D))
|
||||
(define (interp-ind a b c)
|
||||
(match a
|
||||
[`(var ,i) `(var ,(ξ i))]
|
||||
[`(app ,a ,b) `(app ,(ren-ne-dom ξ a) ,(ren-dom ξ b))]
|
||||
[`(if-zero ,a ,b ,c) `(if-zero ,(ren-ne-dom ξ a) ,(ren-dom ξ b) ,(ren-dom ξ c))]))
|
||||
[`(neu ,u) `(neu (ind ,u ,(force b) ,c))]
|
||||
['zero (force b)]
|
||||
[`(succ ,a) (c a (delay (interp-ind (force a) b c)))]))
|
||||
|
||||
(define (ren-dom ξ a)
|
||||
(delay (match (force a)
|
||||
['zero 'zero]
|
||||
[`(succ ,a) `(succ ,(ren-dom ξ a))]
|
||||
[`(neu ,a) `(neu ,(ren-ne-dom ξ a))]
|
||||
[`(fun ,f) `(fun ,(λ (ξ0 α) (f (compose-ren ξ0 ξ) α)))])))
|
||||
|
||||
(define-syntax-rule (interp-fun a ρ)
|
||||
(list 'fun (λ (ξ x) (interp a (ext (compose-ren-sub ξ ρ) x)))))
|
||||
(: ap (-> D Term denv D))
|
||||
(define (ap a b ρ)
|
||||
(match a
|
||||
['zero (error "type-error: ap zero")]
|
||||
[`(succ ,_) (error "type-error: ap succ")]
|
||||
[`(fun ,f) (f (delay (interp b ρ)))]
|
||||
[`(neu ,u) `(neu (app ,u ,(interp b ρ)))]))
|
||||
|
||||
(: interp (-> Term denv D))
|
||||
(define (interp a ρ)
|
||||
(delay (match a
|
||||
(match a
|
||||
[`(var ,i) (force (ρ i))]
|
||||
['zero 'zero]
|
||||
[`(succ ,a) `(succ ,(interp a ρ))]
|
||||
[`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))]
|
||||
[`(succ ,a) `(succ ,(delay (interp a ρ)))]
|
||||
[`(ind ,a ,b ,c) (interp-ind
|
||||
(interp a ρ)
|
||||
(delay (interp b ρ))
|
||||
(interp-fun2 c ρ))]
|
||||
[`(λ ,a) (interp-fun a ρ)]
|
||||
[`(app ,a ,b) (ap (interp a ρ) (interp b ρ))])))
|
||||
[`(app ,a ,b) (ap (interp a ρ) b ρ)]))
|
||||
|
||||
(define (reify a)
|
||||
(match (force a)
|
||||
(: reify (-> V D Term))
|
||||
(define (reify n a)
|
||||
(match a
|
||||
['zero 'zero]
|
||||
[`(succ ,a) `(succ ,(reify a))]
|
||||
[`(fun ,f) (list 'λ (reify (f (curry + 1) '(neu (var 0)))))]
|
||||
[`(neu ,a) (reify-neu a)]))
|
||||
[`(succ ,a) `(succ ,(reify n (force a)))]
|
||||
[`(fun ,f) (list 'λ (reify (+ n 1) (f (delay `(neu (idx ,n))))))]
|
||||
[`(neu ,a) (reify-neu n a)]))
|
||||
|
||||
(define (extract-body a)
|
||||
(: reify-neu (-> V D-ne Term))
|
||||
(define (reify-neu n a)
|
||||
(match a
|
||||
[`(λ ,a) a]
|
||||
[_ (error "reify-neu: not reifiable")]))
|
||||
[`(ind ,a ,b ,c) (list 'ind
|
||||
(reify-neu n a)
|
||||
(reify n b)
|
||||
(reify (+ n 2)
|
||||
(c (delay `(neu (idx ,n)))
|
||||
(delay `(neu (idx ,(+ 1 n)))))))]
|
||||
[`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))]
|
||||
[`(idx ,i) (list 'var (max 0 (- n (+ i 1))))]))
|
||||
|
||||
(define (reify-neu a)
|
||||
(: idsub (-> V V D))
|
||||
(define (idsub s i) `(neu (idx ,(max 0 (- s (+ i 1))))))
|
||||
|
||||
(: scope (-> Term V))
|
||||
(define (scope a)
|
||||
(match a
|
||||
[`(if-zero ,a ,b ,c) (list 'if (reify-neu a) (reify b) (extract-body (reify c)))]
|
||||
[`(app ,u ,v) (list 'app (reify-neu u) (reify v))]
|
||||
[`(var ,i) a]))
|
||||
|
||||
(define (idsub i) `(neu (var ,i)))
|
||||
['zero 0]
|
||||
[`(succ ,a) (scope a)]
|
||||
(`(ind ,a ,b ,c) (max (scope a) (scope b) (- (scope c) 2)))
|
||||
[`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))]
|
||||
[`(λ ,a) (max 0 (- (scope a) 1))]
|
||||
[`(app ,a ,b) (max (scope a) (scope b))]
|
||||
[`(var ,i) (+ i 1)]))
|
||||
|
||||
(: normalize (-> Term Term))
|
||||
(define (normalize a)
|
||||
(reify (interp a idsub)))
|
||||
(let ([sa (scope a)])
|
||||
(reify sa (interp a (λ (x) (delay (idsub sa x)))))))
|
||||
|
||||
(define (subst ρ a)
|
||||
(match a
|
||||
[`(var ,i) (ρ i)]
|
||||
[`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))]
|
||||
[`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ)
|
||||
'(var 0)) a))]))
|
||||
;; (define (subst ρ a)
|
||||
;; (match a
|
||||
;; [`(var ,i) (ρ i)]
|
||||
;; [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))]
|
||||
;; [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ)
|
||||
;; '(var 0)) a))]))
|
||||
|
||||
(define (idsub-tm i) `(var ,i))
|
||||
(define (subst1 b a)
|
||||
(subst (ext idsub-tm b) a))
|
||||
;; (define (idsub-tm i) `(var ,i))
|
||||
;; (define (subst1 b a)
|
||||
;; (subst (ext idsub-tm b) a))
|
||||
|
||||
(define (eval-tm a)
|
||||
(match a
|
||||
[(list 'var _) a]
|
||||
[(list 'λ a) `(λ ,(eval-tm a))]
|
||||
[(list 'app a b)
|
||||
(match (eval-tm a)
|
||||
[(list 'λ a) (eval-tm (subst1 b a))]
|
||||
[v `(app ,v ,(eval-tm b))])]))
|
||||
;; (define (eval-tm a)
|
||||
;; (match a
|
||||
;; [(list 'var _) a]
|
||||
;; [(list 'λ a) `(λ ,(eval-tm a))]
|
||||
;; [(list 'app a b)
|
||||
;; (match (eval-tm a)
|
||||
;; [(list 'λ a) (eval-tm (subst1 b a))]
|
||||
;; [v `(app ,v ,(eval-tm b))])]))
|
||||
|
||||
(define (eval-tm-strict a)
|
||||
(match a
|
||||
[(list 'var _) a]
|
||||
[(list 'λ a) `(λ ,(eval-tm-strict a))]
|
||||
[(list 'app a b)
|
||||
(match (eval-tm-strict a)
|
||||
[(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))]
|
||||
[v `(app ,v ,(eval-tm-strict b))])]))
|
||||
;; (define (eval-tm-strict a)
|
||||
;; (match a
|
||||
;; [(list 'var _) a]
|
||||
;; [(list 'λ a) `(λ ,(eval-tm-strict a))]
|
||||
;; [(list 'app a b)
|
||||
;; (match (eval-tm-strict a)
|
||||
;; [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))]
|
||||
;; [v `(app ,v ,(eval-tm-strict b))])]))
|
||||
|
||||
;; Coquand's algorithm but for β-normal forms
|
||||
(define (η-eq? a b)
|
||||
(match (list a b)
|
||||
['(zero zero) true]
|
||||
[`((succ ,a) (succ ,b)) (η-eq? a b)]
|
||||
[`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0))
|
||||
(and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))]
|
||||
[`((λ ,a) (λ ,b)) (η-eq? a b)]
|
||||
[`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))]
|
||||
[`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)]
|
||||
[`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))]
|
||||
[`((var ,i) (var ,j)) (eqv? i j)]
|
||||
[_ false]))
|
||||
;; ;; Coquand's algorithm but for β-normal forms
|
||||
;; (: η-eq? (-> Term Term Boolean))
|
||||
;; (define (η-eq? a b)
|
||||
;; (match (list a b)
|
||||
;; ['(zero zero) true]
|
||||
;; [`((succ ,a) (succ ,b)) (η-eq? a b)]
|
||||
;; [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0))
|
||||
;; (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))]
|
||||
;; [`((λ ,a) (λ ,b)) (η-eq? a b)]
|
||||
;; [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))]
|
||||
;; [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)]
|
||||
;; [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))]
|
||||
;; [`((var ,i) (var ,j)) (eqv? i j)]
|
||||
;; [_ false]))
|
||||
|
||||
|
||||
(define (βη-eq? a b)
|
||||
(η-eq? (normalize a) (normalize b)))
|
||||
;; (define (βη-eq? a b)
|
||||
;; (η-eq? (normalize a) (normalize b)))
|
||||
|
||||
(: β-eq? (-> Term Term Boolean))
|
||||
(define (β-eq? a b)
|
||||
(equal? (normalize a) (normalize b)))
|
||||
|
||||
(provide eval-tm eval-tm-strict reify interp normalize tm? η-eq? βη-eq? β-eq?)
|
||||
(provide reify interp normalize β-eq? Term D V)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue