Merge branch 'typed-rkt'
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful

This commit is contained in:
Yiyun Liu 2025-05-12 00:59:56 -04:00
commit fc5acfe9a0
3 changed files with 165 additions and 126 deletions

View file

@ -1,4 +1,4 @@
# Kripke-style untyped NbE in racket # untyped NbE in racket
[![status-badge](https://woodpecker.electriclam.com/api/badges/4/status.svg)](https://woodpecker.electriclam.com/repos/4) [![status-badge](https://woodpecker.electriclam.com/api/badges/4/status.svg)](https://woodpecker.electriclam.com/repos/4)
An implementation of normalization by evaluation loosely based on [A An implementation of normalization by evaluation loosely based on [A
@ -10,6 +10,3 @@ Since the implementation is untyped, the `normalize` function only
gives you β-normal forms. However, you can get a little bit of gives you β-normal forms. However, you can get a little bit of
βη-equivalence by invoking Coquand's algorithm (`η-eq?`) on βη-equivalence by invoking Coquand's algorithm (`η-eq?`) on
β-normal forms. β-normal forms.
A more efficient version of NbE based on de Bruijn levels (inverted de
bruijn indices) can be found in the `debruijn-levels` branch.

View file

@ -1,6 +1,6 @@
#lang racket #lang typed/racket
(require rackunit "nbe.rkt") (require typed/rackunit "nbe.rkt")
(define-syntax tm-app (define-syntax tm-app
(syntax-rules () (syntax-rules ()
@ -11,64 +11,85 @@
(define-syntax-rule (tm-var a) `(var ,a)) (define-syntax-rule (tm-var a) `(var ,a))
(define-syntax-rule (tm-abs a) `(λ ,a)) (define-syntax-rule (tm-abs a) `(λ ,a))
(: tm-id Term)
(define tm-id '(λ (var 0))) (define tm-id '(λ (var 0)))
(: tm-fst Term)
(define tm-fst '(λ (λ (var 1)))) (define tm-fst '(λ (λ (var 1))))
(: tm-snd Term)
(define tm-snd '(λ (λ (var 0)))) (define tm-snd '(λ (λ (var 0))))
(: tm-pair Term)
(define tm-pair `(λ (λ (λ ,(tm-app '(var 0) '(var 2) '(var 1)))))) (define tm-pair `(λ (λ (λ ,(tm-app '(var 0) '(var 2) '(var 1))))))
(: tm-fix Term)
(define tm-fix (define tm-fix
(let ([g (tm-abs (tm-app (tm-var 1) (tm-app (tm-var 0) (tm-var 0))))]) (let ([g (tm-abs (tm-app (tm-var 1) (tm-app (tm-var 0) (tm-var 0))))])
(tm-abs (tm-app g g)))) (tm-abs (tm-app g g))))
(: tm-zero Term)
(define tm-zero tm-snd) (define tm-zero tm-snd)
(: tm-suc (-> Term Term))
(define (tm-suc a) (tm-abs (tm-abs (tm-app (tm-var 1) (tm-app a (tm-var 1) (tm-var 0)))))) (define (tm-suc a) (tm-abs (tm-abs (tm-app (tm-var 1) (tm-app a (tm-var 1) (tm-var 0))))))
(: tm-add (-> Term Term Term))
(define (tm-add a b) (define (tm-add a b)
(tm-abs (tm-abs (tm-abs (tm-abs
(tm-app b (tm-var 1) (tm-app a (tm-var 1) (tm-var 0)))))) (tm-app b (tm-var 1) (tm-app a (tm-var 1) (tm-var 0))))))
(: tm-ind (-> Term Term Term Term))
(define (tm-ind a b c)
`(ind ,a ,b ,c))
(: tm-padd (-> Term Term Term))
(define (tm-padd a b)
(tm-app (tm-ind a tm-id (tm-abs (tm-psuc (tm-app (tm-var 1) (tm-var 0))))) b))
(: tm-compose (-> Term Term Term))
(define (tm-compose a b) (define (tm-compose a b)
(tm-abs (tm-app a (tm-app b (tm-var 0))))) (tm-abs (tm-app a (tm-app b (tm-var 0)))))
(: tm-mult (-> Term Term Term))
(define (tm-mult a b) (tm-compose a b)) (define (tm-mult a b) (tm-compose a b))
(: tm-nat (-> V Term))
(define (tm-nat n) (define (tm-nat n)
(if (positive? n) (if (positive? n)
(tm-suc (tm-nat (- n 1))) (tm-suc (tm-nat (- n 1)))
tm-zero)) tm-zero))
(: tm-const Term)
(define tm-const tm-fst)
(: tm-loop Term)
(define tm-loop
(let ([g (tm-abs (tm-app (tm-var 0) (tm-var 0)))])
(tm-app g g)))
(: tm-nat-to-pnat Term)
(define tm-nat-to-pnat
(tm-abs (tm-app (tm-var 0) (tm-abs '(succ (var 0))) 'zero)))
(: tm-pnat (-> V Term))
(define (tm-pnat n) (define (tm-pnat n)
(if (positive? n) (if (positive? n)
`(succ ,(tm-pnat (- n 1))) `(succ ,(tm-pnat (- n 1)))
'zero)) 'zero))
(define (tm-ifz a b c) (: tm-psuc (-> Term Term))
`(if-zero ,a ,b ,c))
(define (tm-psuc a) (define (tm-psuc a)
`(succ ,a)) `(succ ,a))
(define (tm-double m)
(tm-app tm-fix
(tm-abs (tm-abs (tm-ifz (tm-var 0) 'zero 'zero))) m ))
(define (tm-padd m n)
(tm-app tm-fix
(tm-abs (tm-abs (tm-abs (tm-ifz (tm-var 1) (tm-var 0) (tm-psuc (tm-app (tm-var 3) (tm-var 0) (tm-var 1))))))) m n))
(check-equal? (normalize `(app ,tm-id ,tm-id)) tm-id) (check-equal? (normalize `(app ,tm-id ,tm-id)) tm-id)
(check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-snd)) tm-fst) (check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-snd)) tm-fst)
(check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-fst)) tm-id) (check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-fst)) tm-id)
(check-equal? (normalize (tm-app tm-snd (tm-app tm-pair tm-id tm-fst) tm-fst)) tm-fst) (check-equal? (normalize (tm-app tm-snd (tm-app tm-pair tm-id tm-fst) tm-fst)) tm-fst)
(check-equal? (normalize (tm-add (tm-nat 499) (tm-nat 777))) (normalize (tm-add (tm-nat 777) (tm-nat 499)))) (check-equal? (normalize (tm-add (tm-nat 499) (tm-nat 777))) (normalize (tm-add (tm-nat 777) (tm-nat 499))))
(check-equal? (normalize (tm-mult (tm-nat 3) (tm-nat 2))) (normalize (tm-nat 6))) (check-equal? (normalize (tm-app tm-const (tm-nat 0) tm-loop)) (normalize (tm-nat 0)))
(check-equal? (normalize (tm-mult (tm-nat 11) (tm-nat 116))) (normalize (tm-nat 1276))) (check-equal? (normalize (tm-app tm-nat-to-pnat (tm-nat 10))) (tm-pnat 10))
(check η-eq? (normalize (tm-add (tm-nat 499) (tm-nat 777))) (normalize (tm-add (tm-nat 777) (tm-nat 499)))) (check-equal? (normalize `(ind ,(tm-pnat 3) ,(tm-pnat 0) (var 1))) (tm-pnat 2))
(check βη-eq? (tm-mult (tm-nat 6) (tm-nat 7)) (tm-nat 42)) (check-equal? (normalize `(ind ,(tm-pnat 3) ,tm-loop (var 1))) (tm-pnat 2))
(check βη-eq? '(if-zero (succ (succ zero)) zero (succ (succ (var 0)))) (tm-pnat 3)) (check-equal? (normalize (tm-padd (tm-pnat 10000) (tm-pnat 2000)))
(check βη-eq? (tm-padd (tm-pnat 8) (tm-pnat 11)) (tm-pnat 19)) (tm-pnat 12000))
(check βη-eq? (tm-padd (tm-pnat 2) (tm-psuc (tm-var 0))) '(succ (succ (succ (var 0)))))

225
nbe.rkt
View file

@ -1,138 +1,159 @@
#lang racket #lang typed/racket
;; Grammar (Λ) ;; Grammar (Λ)
;; t := λ t | app t t | i ;; t := λ t | app t t | i
;; Domain (define-type denv (-> V (Promise D)))
;; D := neu D_ne | fun [(var -> var) -> D → D] (define-type V Nonnegative-Integer)
;; D_ne := var i | app D_ne D (define-type Term ( 'zero
(List 'succ Term)
(List 'var V)
(List 'λ Term)
(List 'app Term Term)
(List 'ind Term Term Term)))
(define (tm? a) (define-type D ( 'zero
(match a (List 'succ (Promise D))
['zero true] (List 'fun (-> (Promise D) D))
[`(succ ,a) (tm? a)] (List 'neu D-ne)))
[`(if-zero ,a ,b ,c) (and (tm? a) (tm? b) (tm? c))]
[`(λ ,a) (tm? a)]
[`(app ,a ,b) (and (tm? a) (tm? b))]
[`(var ,i) (exact-nonnegative-integer? i)]
[_ false]))
(define-syntax-rule (ap a b) (define-type D-ne ( (List 'app D-ne D)
(match (force a) (List 'idx V)
[`(fun ,f) (force (f identity b))] (List 'ind D-ne D (-> (Promise D) (Promise D) D))))
[`(neu ,u) `(neu (app ,u ,b))]
[_ (error "ap: type error")]))
(define-syntax-rule (ifz a b c) (: ext (-> denv (Promise D) denv))
(match (force a) (define (ext ρ a)
['zero (force b)] (lambda (i)
[`(succ ,u) (ap c u)]
[`(neu ,u) `(neu (if-zero ,u ,b ,c))]))
(define compose-ren compose)
(define (compose-ren-sub ξ ρ)
(compose (curry ren-dom ξ) ρ))
(define-syntax-rule (ext ρ a)
(lambda (i)
(if (zero? i) (if (zero? i)
a a
(ρ (- i 1))))) (ρ (- i 1)))))
(define (ren-ne-dom ξ a)
(: interp-fun (-> Term denv D))
(define (interp-fun a ρ)
(list 'fun (λ (x) (interp a (ext ρ x)))))
(: interp-fun2 (-> Term denv (-> (Promise D) (Promise D) D)))
(define (interp-fun2 a ρ)
(λ (x y) (interp a (ext (ext ρ x) y))))
(: interp-ind (-> D (Promise D) (-> (Promise D) (Promise D) D) D))
(define (interp-ind a b c)
(match a (match a
[`(var ,i) `(var ,(ξ i))] [`(neu ,u) `(neu (ind ,u ,(force b) ,c))]
[`(app ,a ,b) `(app ,(ren-ne-dom ξ a) ,(ren-dom ξ b))] ['zero (force b)]
[`(if-zero ,a ,b ,c) `(if-zero ,(ren-ne-dom ξ a) ,(ren-dom ξ b) ,(ren-dom ξ c))])) [`(succ ,a) (c a (delay (interp-ind (force a) b c)))]))
(define (ren-dom ξ a) (: ap (-> D Term denv D))
(delay (match (force a) (define (ap a b ρ)
['zero 'zero] (match a
[`(succ ,a) `(succ ,(ren-dom ξ a))] ['zero (error "type-error: ap zero")]
[`(neu ,a) `(neu ,(ren-ne-dom ξ a))] [`(succ ,_) (error "type-error: ap succ")]
[`(fun ,f) `(fun ,(λ (ξ0 α) (f (compose-ren ξ0 ξ) α)))]))) [`(fun ,f) (f (delay (interp b ρ)))]
[`(neu ,u) `(neu (app ,u ,(interp b ρ)))]))
(define-syntax-rule (interp-fun a ρ)
(list 'fun (λ (ξ x) (interp a (ext (compose-ren-sub ξ ρ) x)))))
(: interp (-> Term denv D))
(define (interp a ρ) (define (interp a ρ)
(delay (match a (match a
[`(var ,i) (force (ρ i))] [`(var ,i) (force (ρ i))]
['zero 'zero] ['zero 'zero]
[`(succ ,a) `(succ ,(interp a ρ))] [`(succ ,a) `(succ ,(delay (interp a ρ)))]
[`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))] [`(ind ,a ,b ,c) (interp-ind
(interp a ρ)
(delay (interp b ρ))
(interp-fun2 c ρ))]
[`(λ ,a) (interp-fun a ρ)] [`(λ ,a) (interp-fun a ρ)]
[`(app ,a ,b) (ap (interp a ρ) (interp b ρ))]))) [`(app ,a ,b) (ap (interp a ρ) b ρ)]))
(define (reify a) (: reify (-> V D Term))
(match (force a) (define (reify n a)
(match a
['zero 'zero] ['zero 'zero]
[`(succ ,a) `(succ ,(reify a))] [`(succ ,a) `(succ ,(reify n (force a)))]
[`(fun ,f) (list 'λ (reify (f (curry + 1) '(neu (var 0)))))] [`(fun ,f) (list 'λ (reify (+ n 1) (f (delay `(neu (idx ,n))))))]
[`(neu ,a) (reify-neu a)])) [`(neu ,a) (reify-neu n a)]))
(define (extract-body a) (: reify-neu (-> V D-ne Term))
(define (reify-neu n a)
(match a (match a
[`(λ ,a) a] [`(ind ,a ,b ,c) (list 'ind
[_ (error "reify-neu: not reifiable")])) (reify-neu n a)
(reify n b)
(reify (+ n 2)
(c (delay `(neu (idx ,n)))
(delay `(neu (idx ,(+ 1 n)))))))]
[`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))]
[`(idx ,i) (list 'var (max 0 (- n (+ i 1))))]))
(define (reify-neu a) (: idsub (-> V V D))
(define (idsub s i) `(neu (idx ,(max 0 (- s (+ i 1))))))
(: scope (-> Term V))
(define (scope a)
(match a (match a
[`(if-zero ,a ,b ,c) (list 'if (reify-neu a) (reify b) (extract-body (reify c)))] ['zero 0]
[`(app ,u ,v) (list 'app (reify-neu u) (reify v))] [`(succ ,a) (scope a)]
[`(var ,i) a])) (`(ind ,a ,b ,c) (max (scope a) (scope b) (- (scope c) 2)))
[`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))]
(define (idsub i) `(neu (var ,i))) [`(λ ,a) (max 0 (- (scope a) 1))]
[`(app ,a ,b) (max (scope a) (scope b))]
[`(var ,i) (+ i 1)]))
(: normalize (-> Term Term))
(define (normalize a) (define (normalize a)
(reify (interp a idsub))) (let ([sa (scope a)])
(reify sa (interp a (λ (x) (delay (idsub sa x)))))))
(define (subst ρ a) ;; (define (subst ρ a)
(match a ;; (match a
[`(var ,i) (ρ i)] ;; [`(var ,i) (ρ i)]
[`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))] ;; [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))]
[`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ) ;; [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ)
'(var 0)) a))])) ;; '(var 0)) a))]))
(define (idsub-tm i) `(var ,i)) ;; (define (idsub-tm i) `(var ,i))
(define (subst1 b a) ;; (define (subst1 b a)
(subst (ext idsub-tm b) a)) ;; (subst (ext idsub-tm b) a))
(define (eval-tm a) ;; (define (eval-tm a)
(match a ;; (match a
[(list 'var _) a] ;; [(list 'var _) a]
[(list 'λ a) `(λ ,(eval-tm a))] ;; [(list 'λ a) `(λ ,(eval-tm a))]
[(list 'app a b) ;; [(list 'app a b)
(match (eval-tm a) ;; (match (eval-tm a)
[(list 'λ a) (eval-tm (subst1 b a))] ;; [(list 'λ a) (eval-tm (subst1 b a))]
[v `(app ,v ,(eval-tm b))])])) ;; [v `(app ,v ,(eval-tm b))])]))
(define (eval-tm-strict a) ;; (define (eval-tm-strict a)
(match a ;; (match a
[(list 'var _) a] ;; [(list 'var _) a]
[(list 'λ a) `(λ ,(eval-tm-strict a))] ;; [(list 'λ a) `(λ ,(eval-tm-strict a))]
[(list 'app a b) ;; [(list 'app a b)
(match (eval-tm-strict a) ;; (match (eval-tm-strict a)
[(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))] ;; [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))]
[v `(app ,v ,(eval-tm-strict b))])])) ;; [v `(app ,v ,(eval-tm-strict b))])]))
;; Coquand's algorithm but for β-normal forms ;; ;; Coquand's algorithm but for β-normal forms
(define (η-eq? a b) ;; (: η-eq? (-> Term Term Boolean))
(match (list a b) ;; (define (η-eq? a b)
['(zero zero) true] ;; (match (list a b)
[`((succ ,a) (succ ,b)) (η-eq? a b)] ;; ['(zero zero) true]
[`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0)) ;; [`((succ ,a) (succ ,b)) (η-eq? a b)]
(and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))] ;; [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0))
[`((λ ,a) (λ ,b)) (η-eq? a b)] ;; (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))]
[`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))] ;; [`((λ ,a) (λ ,b)) (η-eq? a b)]
[`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)] ;; [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))]
[`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))] ;; [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)]
[`((var ,i) (var ,j)) (eqv? i j)] ;; [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))]
[_ false])) ;; [`((var ,i) (var ,j)) (eqv? i j)]
;; [_ false]))
(define (βη-eq? a b) ;; (define (βη-eq? a b)
(η-eq? (normalize a) (normalize b))) ;; (η-eq? (normalize a) (normalize b)))
(: β-eq? (-> Term Term Boolean))
(define (β-eq? a b) (define (β-eq? a b)
(equal? (normalize a) (normalize b))) (equal? (normalize a) (normalize b)))
(provide eval-tm eval-tm-strict reify interp normalize tm? η-eq? βη-eq? β-eq?) (provide reify interp normalize β-eq? Term D V)