From 7bf8bdde485d5e0cfb8448b230f955220105c18f Mon Sep 17 00:00:00 2001 From: Yiyun Liu Date: Sat, 10 May 2025 00:32:57 -0400 Subject: [PATCH] Start porting to typed racket --- nbe.rkt | 247 ++++++++++++++++++++++++++++++++------------------------ 1 file changed, 142 insertions(+), 105 deletions(-) diff --git a/nbe.rkt b/nbe.rkt index 1e18965..a300468 100644 --- a/nbe.rkt +++ b/nbe.rkt @@ -1,132 +1,169 @@ -#lang racket +#lang typed/racket ;; Grammar (Λ) ;; t := λ t | app t t | i +(define-type V Nonnegative-Integer) + +(define-type Term (∪ Var Abs App)) +(struct Var ([get : V])) +(struct Abs ([body : Term])) +(struct App ([fun : Term] [arg : Term])) + +(define-type D (∪ D-ne Clos)) +(struct Idx ([get : V])) +(struct D-ne ([get : (∪ Idx DApp)])) +(struct Clos ([get : (-> (Promise D) (Promise D))] )) +(struct DApp ([fun : D-ne] [arg : (Promise D)])) + + + +(: ext (-> (-> V (Promise D)) (Promise D) (-> V (Promise D)))) +(define (ext ρ a) + (lambda (i) + (if (zero? i) + a + (ρ (- i 1))))) + +(: ap (-> (Promise D) (Promise D) D)) +(define (ap a b) + (match (force a) + [(Clos f) (force (f b))] + [(D-ne u) (D-ne (DApp (D-ne u) b))])) + +;; (define-syntax-rule (ap a b) +;; (match (force a) +;; [`(fun ,f) (force (f b))] +;; [`(neu ,u) `(neu (app ,u ,b))] +;; [_ (error "ap: type error")])) + + ;; Domain ;; D := neu D_ne | fun [(var -> var) -> D → D] ;; D_ne := var i | app D_ne D -(define (tm? a) - (match a - ['zero true] - [`(succ ,a) (tm? a)] - [`(if-zero ,a ,b ,c) (and (tm? a) (tm? b) (tm? c))] - [`(λ ,a) (tm? a)] - [`(app ,a ,b) (and (tm? a) (tm? b))] - [`(var ,i) (exact-nonnegative-integer? i)] - [_ false])) +;; (define (tm? a) +;; (match a +;; ['zero true] +;; [`(succ ,a) (tm? a)] +;; [`(if-zero ,a ,b ,c) (and (tm? a) (tm? b) (tm? c))] +;; [`(λ ,a) (tm? a)] +;; [`(app ,a ,b) (and (tm? a) (tm? b))] +;; [`(var ,i) (exact-nonnegative-integer? i)] +;; [_ false])) -(define-syntax-rule (ap a b) - (match (force a) - [`(fun ,f) (force (f b))] - [`(neu ,u) `(neu (app ,u ,b))] - [_ (error "ap: type error")])) +;; (define-syntax-rule (ap a b) +;; (match (force a) +;; [`(fun ,f) (force (f b))] +;; [`(neu ,u) `(neu (app ,u ,b))] +;; [_ (error "ap: type error")])) -(define-syntax-rule (ifz a b c) - (match (force a) - ['zero (force b)] - [`(succ ,u) (ap c u)] - [`(neu ,u) `(neu (if-zero ,u ,b ,c))])) +;; (define-syntax-rule (ifz a b c) +;; (match (force a) +;; ['zero (force b)] +;; [`(succ ,u) (ap c u)] +;; [`(neu ,u) `(neu (if-zero ,u ,b ,c))])) -(define-syntax-rule (ext ρ a) - (lambda (i) - (if (zero? i) - a - (ρ (- i 1))))) +;; (define-syntax-rule (ext ρ a) +;; (lambda (i) +;; (if (zero? i) +;; a +;; (ρ (- i 1))))) -(define-syntax-rule (interp-fun a ρ) - (list 'fun (λ (x) (interp a (ext ρ x))))) +;; (define-syntax-rule (interp-fun a ρ) +;; (list 'fun (λ (x) (interp a (ext ρ x))))) -(define (interp a ρ) - (delay (match a - [`(var ,i) (force (ρ i))] - ['zero 'zero] - [`(succ ,a) `(succ ,(interp a ρ))] - [`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))] - [`(λ ,a) (interp-fun a ρ)] - [`(app ,a ,b) (ap (interp a ρ) (interp b ρ))]))) +;; (: interp (-> Term (-> Term))) -(define (reify n a) - (match (force a) - ['zero 'zero] - [`(succ ,a) `(succ ,(reify n a))] - [`(fun ,f) (list 'λ (reify (+ n 1) (f `(neu (var ,n)))))] - [`(neu ,a) (reify-neu n a)])) +;; (define (interp a ρ) +;; (delay (match a +;; [`(var ,i) (force (ρ i))] +;; ['zero 'zero] +;; [`(succ ,a) `(succ ,(interp a ρ))] +;; [`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))] +;; [`(λ ,a) (interp-fun a ρ)] +;; [`(app ,a ,b) (ap (interp a ρ) (interp b ρ))]))) -(define (extract-body a) - (match a - [`(λ ,a) a] - [_ (error "reify-neu: not reifiable")])) +;; (define (reify n a) +;; (match (force a) +;; ['zero 'zero] +;; [`(succ ,a) `(succ ,(reify n a))] +;; [`(fun ,f) (list 'λ (reify (+ n 1) (f `(neu (var ,n)))))] +;; [`(neu ,a) (reify-neu n a)])) -(define (reify-neu n a) - (match a - [`(if-zero ,a ,b ,c) (list 'if (reify-neu n a) (reify n b) (extract-body (reify n c)))] - [`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))] - [`(var ,i) (list 'var (- n (+ i 1)))])) +;; (define (extract-body a) +;; (match a +;; [`(λ ,a) a] +;; [_ (error "reify-neu: not reifiable")])) -(define (idsub s i) `(neu (var ,(- s (+ i 1))))) +;; (define (reify-neu n a) +;; (match a +;; [`(if-zero ,a ,b ,c) (list 'if (reify-neu n a) (reify n b) (extract-body (reify n c)))] +;; [`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))] +;; [`(var ,i) (list 'var (- n (+ i 1)))])) -(define (scope a) - (match a - ['zero 0] - [`(succ ,a) (scope a)] - [`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))] - [`(λ ,a) (max 0 (- (scope a) 1))] - [`(app ,a ,b) (max (scope a) (scope b))] - [`(var ,i) (+ i 1)])) +;; (define (idsub s i) `(neu (var ,(- s (+ i 1))))) -(define (normalize a) - (let ([sa (scope a)]) - (reify sa (interp a (curry idsub sa))))) +;; (define (scope a) +;; (match a +;; ['zero 0] +;; [`(succ ,a) (scope a)] +;; [`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))] +;; [`(λ ,a) (max 0 (- (scope a) 1))] +;; [`(app ,a ,b) (max (scope a) (scope b))] +;; [`(var ,i) (+ i 1)])) -(define (subst ρ a) - (match a - [`(var ,i) (ρ i)] - [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))] - [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ) - '(var 0)) a))])) +;; (define (normalize a) +;; (let ([sa (scope a)]) +;; (reify sa (interp a (curry idsub sa))))) -(define (idsub-tm i) `(var ,i)) -(define (subst1 b a) - (subst (ext idsub-tm b) a)) +;; (define (subst ρ a) +;; (match a +;; [`(var ,i) (ρ i)] +;; [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))] +;; [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ) +;; '(var 0)) a))])) -(define (eval-tm a) - (match a - [(list 'var _) a] - [(list 'λ a) `(λ ,(eval-tm a))] - [(list 'app a b) - (match (eval-tm a) - [(list 'λ a) (eval-tm (subst1 b a))] - [v `(app ,v ,(eval-tm b))])])) +;; (define (idsub-tm i) `(var ,i)) +;; (define (subst1 b a) +;; (subst (ext idsub-tm b) a)) -(define (eval-tm-strict a) - (match a - [(list 'var _) a] - [(list 'λ a) `(λ ,(eval-tm-strict a))] - [(list 'app a b) - (match (eval-tm-strict a) - [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))] - [v `(app ,v ,(eval-tm-strict b))])])) +;; (define (eval-tm a) +;; (match a +;; [(list 'var _) a] +;; [(list 'λ a) `(λ ,(eval-tm a))] +;; [(list 'app a b) +;; (match (eval-tm a) +;; [(list 'λ a) (eval-tm (subst1 b a))] +;; [v `(app ,v ,(eval-tm b))])])) -;; Coquand's algorithm but for β-normal forms -(define (η-eq? a b) - (match (list a b) - ['(zero zero) true] - [`((succ ,a) (succ ,b)) (η-eq? a b)] - [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0)) - (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))] - [`((λ ,a) (λ ,b)) (η-eq? a b)] - [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))] - [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)] - [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))] - [`((var ,i) (var ,j)) (eqv? i j)] - [_ false])) +;; (define (eval-tm-strict a) +;; (match a +;; [(list 'var _) a] +;; [(list 'λ a) `(λ ,(eval-tm-strict a))] +;; [(list 'app a b) +;; (match (eval-tm-strict a) +;; [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))] +;; [v `(app ,v ,(eval-tm-strict b))])])) + +;; ;; Coquand's algorithm but for β-normal forms +;; (define (η-eq? a b) +;; (match (list a b) +;; ['(zero zero) true] +;; [`((succ ,a) (succ ,b)) (η-eq? a b)] +;; [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0)) +;; (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))] +;; [`((λ ,a) (λ ,b)) (η-eq? a b)] +;; [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))] +;; [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)] +;; [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))] +;; [`((var ,i) (var ,j)) (eqv? i j)] +;; [_ false])) -(define (βη-eq? a b) - (η-eq? (normalize a) (normalize b))) +;; (define (βη-eq? a b) +;; (η-eq? (normalize a) (normalize b))) -(define (β-eq? a b) - (equal? (normalize a) (normalize b))) +;; (define (β-eq? a b) +;; (equal? (normalize a) (normalize b))) -(provide eval-tm eval-tm-strict reify interp normalize tm? η-eq? βη-eq? β-eq?) +;; (provide eval-tm eval-tm-strict reify interp normalize tm? η-eq? βη-eq? β-eq?)