Add back beta-eta equality
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
This commit is contained in:
parent
aa233cc86b
commit
755119316b
2 changed files with 39 additions and 47 deletions
83
nbe.rkt
83
nbe.rkt
|
@ -20,15 +20,13 @@
|
|||
(List 'idx V)
|
||||
(List 'ind D-ne D (-> (Promise D) (Promise D) D))))
|
||||
|
||||
(: ext (-> denv (Promise D) denv))
|
||||
(: ext (All (A) (-> (-> V A) A (-> V A))))
|
||||
(define (ext ρ a)
|
||||
(lambda (i)
|
||||
(if (zero? i)
|
||||
a
|
||||
(ρ (- i 1)))))
|
||||
|
||||
|
||||
|
||||
(: interp-fun (-> Term denv D))
|
||||
(define (interp-fun a ρ)
|
||||
(list 'fun (λ (x) (interp a (ext ρ x)))))
|
||||
|
@ -104,56 +102,47 @@
|
|||
(let ([sa (scope a)])
|
||||
(reify sa (interp a (λ (x) (delay (idsub sa x)))))))
|
||||
|
||||
;; (define (subst ρ a)
|
||||
;; (match a
|
||||
;; [`(var ,i) (ρ i)]
|
||||
;; [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))]
|
||||
;; [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ)
|
||||
;; '(var 0)) a))]))
|
||||
(: up (-> V (-> V Term) (-> V Term)))
|
||||
(define (up n ρ)
|
||||
(ext (λ ([x : V]) (subst (λ (i) `(var ,(+ i n))) (ρ x))) '(var 0)))
|
||||
|
||||
;; (define (idsub-tm i) `(var ,i))
|
||||
;; (define (subst1 b a)
|
||||
;; (subst (ext idsub-tm b) a))
|
||||
(: subst (-> (-> V Term) Term Term))
|
||||
(define (subst ρ a)
|
||||
(match a
|
||||
[`(var ,i) (ρ i)]
|
||||
[`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))]
|
||||
[`(λ ,a) `(λ ,(subst (up 1 ρ) a))]
|
||||
['zero 'zero]
|
||||
[`(succ ,a) `(succ ,(subst ρ a))]
|
||||
[`(ind ,a ,b ,c) `(ind ,(subst ρ a) ,(subst ρ b) ,(subst (up 2 ρ) c))]))
|
||||
|
||||
;; (define (eval-tm a)
|
||||
;; (match a
|
||||
;; [(list 'var _) a]
|
||||
;; [(list 'λ a) `(λ ,(eval-tm a))]
|
||||
;; [(list 'app a b)
|
||||
;; (match (eval-tm a)
|
||||
;; [(list 'λ a) (eval-tm (subst1 b a))]
|
||||
;; [v `(app ,v ,(eval-tm b))])]))
|
||||
(: idsub-tm (-> V Term))
|
||||
(define (idsub-tm i) `(var ,i))
|
||||
(: subst1 (-> Term Term Term))
|
||||
(define (subst1 b a)
|
||||
(subst (ext idsub-tm b) a))
|
||||
|
||||
;; (define (eval-tm-strict a)
|
||||
;; (match a
|
||||
;; [(list 'var _) a]
|
||||
;; [(list 'λ a) `(λ ,(eval-tm-strict a))]
|
||||
;; [(list 'app a b)
|
||||
;; (match (eval-tm-strict a)
|
||||
;; [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))]
|
||||
;; [v `(app ,v ,(eval-tm-strict b))])]))
|
||||
;; Coquand's algorithm but for β-normal forms
|
||||
(: η-eq? (-> Term Term Boolean))
|
||||
(define (η-eq? a b)
|
||||
(match (list a b)
|
||||
['(zero zero) true]
|
||||
[`((succ ,a) (succ ,b)) (η-eq? a b)]
|
||||
[`((ind ,a ,b ,c) (ind ,a0 ,b0 ,c0))
|
||||
(and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))]
|
||||
[`((λ ,a) (λ ,b)) (η-eq? a b)]
|
||||
[`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))]
|
||||
[`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)]
|
||||
[`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))]
|
||||
[`((var ,i) (var ,j)) (eqv? i j)]
|
||||
[_ false]))
|
||||
|
||||
;; ;; Coquand's algorithm but for β-normal forms
|
||||
;; (: η-eq? (-> Term Term Boolean))
|
||||
;; (define (η-eq? a b)
|
||||
;; (match (list a b)
|
||||
;; ['(zero zero) true]
|
||||
;; [`((succ ,a) (succ ,b)) (η-eq? a b)]
|
||||
;; [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0))
|
||||
;; (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))]
|
||||
;; [`((λ ,a) (λ ,b)) (η-eq? a b)]
|
||||
;; [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))]
|
||||
;; [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)]
|
||||
;; [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))]
|
||||
;; [`((var ,i) (var ,j)) (eqv? i j)]
|
||||
;; [_ false]))
|
||||
|
||||
|
||||
;; (define (βη-eq? a b)
|
||||
;; (η-eq? (normalize a) (normalize b)))
|
||||
(: βη-eq? (-> Term Term Boolean))
|
||||
(define (βη-eq? a b)
|
||||
(η-eq? (normalize a) (normalize b)))
|
||||
|
||||
(: β-eq? (-> Term Term Boolean))
|
||||
(define (β-eq? a b)
|
||||
(equal? (normalize a) (normalize b)))
|
||||
|
||||
(provide reify interp normalize β-eq? Term D V)
|
||||
(provide reify interp normalize β-eq? Term D V βη-eq?)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue