Add natural numbers
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
This commit is contained in:
parent
efbd7bbcd5
commit
5f9b001531
2 changed files with 64 additions and 16 deletions
25
nbe-test.rkt
25
nbe-test.rkt
|
@ -19,7 +19,7 @@
|
|||
|
||||
(define tm-pair `(λ (λ (λ ,(tm-app '(var 0) '(var 2) '(var 1))))))
|
||||
|
||||
(define tm-y
|
||||
(define tm-fix
|
||||
(let ([g (tm-abs (tm-app (tm-var 1) (tm-app (tm-var 0) (tm-var 0))))])
|
||||
(tm-abs (tm-app g g))))
|
||||
|
||||
|
@ -41,6 +41,25 @@
|
|||
(tm-suc (tm-nat (- n 1)))
|
||||
tm-zero))
|
||||
|
||||
(define (tm-pnat n)
|
||||
(if (positive? n)
|
||||
`(succ ,(tm-pnat (- n 1)))
|
||||
'zero))
|
||||
|
||||
(define (tm-ifz a b c)
|
||||
`(if-zero ,a ,b ,c))
|
||||
|
||||
(define (tm-psuc a)
|
||||
`(succ ,a))
|
||||
|
||||
(define (tm-double m)
|
||||
(tm-app tm-fix
|
||||
(tm-abs (tm-abs (tm-ifz (tm-var 0) 'zero 'zero))) m ))
|
||||
|
||||
(define (tm-padd m n)
|
||||
(tm-app tm-fix
|
||||
(tm-abs (tm-abs (tm-abs (tm-ifz (tm-var 1) (tm-var 0) (tm-psuc (tm-app (tm-var 3) (tm-var 0) (tm-var 1))))))) m n))
|
||||
|
||||
(check-equal? (normalize `(app ,tm-id ,tm-id)) tm-id)
|
||||
(check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-snd)) tm-fst)
|
||||
(check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-fst)) tm-id)
|
||||
|
@ -49,5 +68,5 @@
|
|||
(check-equal? (normalize (tm-mult (tm-nat 3) (tm-nat 2))) (normalize (tm-nat 6)))
|
||||
(check-equal? (normalize (tm-mult (tm-nat 11) (tm-nat 116))) (normalize (tm-nat 1276)))
|
||||
(check η-eq? (normalize (tm-add (tm-nat 499) (tm-nat 777))) (normalize (tm-add (tm-nat 777) (tm-nat 499))))
|
||||
(check βη-eq? (tm-mult (tm-nat 888) (tm-nat 999)) (tm-nat 887112))
|
||||
(check β-eq? (tm-mult (tm-nat 888) (tm-nat 999)) (tm-nat 887112))
|
||||
(check βη-eq? (tm-mult (tm-nat 6) (tm-nat 7)) (tm-nat 42))
|
||||
(check βη-eq? '(if-zero (succ (succ zero)) zero (succ (succ (var 0)))) (tm-pnat 3))
|
||||
|
|
55
nbe.rkt
55
nbe.rkt
|
@ -6,15 +6,31 @@
|
|||
;; D := neu D_ne | fun [(var -> var) -> D → D]
|
||||
;; D_ne := var i | app D_ne D
|
||||
|
||||
(define (tm? a)
|
||||
(match a
|
||||
['zero true]
|
||||
[`(succ ,a) (tm? a)]
|
||||
[`(if-zero ,a ,b ,c) (and (tm? a) (tm? b) (tm? c))]
|
||||
[`(λ ,a) (tm? a)]
|
||||
[`(app ,a ,b) (and (tm? a) (tm? b))]
|
||||
[`(var ,i) (exact-nonnegative-integer? i)]
|
||||
[_ false]))
|
||||
|
||||
(define (ap a b)
|
||||
(define-syntax-rule (ap a b)
|
||||
(match a
|
||||
[`(fun ,f) (f identity b)]
|
||||
[`(neu ,u) `(neu (app ,u ,b))]))
|
||||
[`(neu ,u) `(neu (app ,u ,b))]
|
||||
[_ (error "ap: type error")]))
|
||||
|
||||
(define-syntax-rule (ifz a b c)
|
||||
(match a
|
||||
['zero b]
|
||||
[`(succ ,u) (ap c u)]
|
||||
[`(neu ,u) `(neu (if-zero ,u ,b ,c))]))
|
||||
|
||||
(define compose-ren compose)
|
||||
(define (compose-ren-sub ξ ρ) (compose (curry ren-dom ξ) ρ))
|
||||
(define (ext ρ a)
|
||||
(define-syntax-rule (ext ρ a)
|
||||
(lambda (i)
|
||||
(if (zero? i)
|
||||
a
|
||||
|
@ -23,26 +39,43 @@
|
|||
(define (ren-ne-dom ξ a)
|
||||
(match a
|
||||
[`(var ,i) `(var ,(ξ i))]
|
||||
[`(app ,a ,b) `(app ,(ren-ne-dom ξ a) ,(ren-dom ξ b))]))
|
||||
[`(app ,a ,b) `(app ,(ren-ne-dom ξ a) ,(ren-dom ξ b))]
|
||||
[`(if-zero ,a ,b ,c) `(if-zero ,(ren-ne-dom ξ a) ,(ren-dom ξ b) ,(ren-dom ξ c))]))
|
||||
|
||||
(define (ren-dom ξ a)
|
||||
(match a
|
||||
['zero 'zero]
|
||||
[`(succ ,a) `(succ ,(ren-dom ξ a))]
|
||||
[`(neu ,a) `(neu ,(ren-ne-dom ξ a))]
|
||||
[`(fun ,f) `(fun ,(λ (ξ0 α) (f (compose-ren ξ0 ξ) α)))]))
|
||||
|
||||
(define-syntax-rule (interp-fun a ρ)
|
||||
(list 'fun (λ (ξ x) (interp a (ext (compose-ren-sub ξ ρ) x)))))
|
||||
|
||||
(define (interp a ρ)
|
||||
(match a
|
||||
[`(var ,i) (ρ i)]
|
||||
[`(λ ,a) (list 'fun (λ (ξ x) (interp a (ext (compose-ren-sub ξ ρ) x))))]
|
||||
['zero 'zero]
|
||||
[`(succ ,a) `(succ ,(interp a ρ))]
|
||||
[`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))]
|
||||
[`(λ ,a) (interp-fun a ρ)]
|
||||
[`(app ,a ,b) (ap (interp a ρ) (interp b ρ))]))
|
||||
|
||||
(define (reify a)
|
||||
(match a
|
||||
['zero 'zero]
|
||||
[`(succ ,a) `(succ ,(reify a))]
|
||||
[`(fun ,f) (list 'λ (reify (f (curry + 1) '(neu (var 0)))))]
|
||||
[`(neu ,a) (reify-neu a)]))
|
||||
|
||||
(define (extract-body a)
|
||||
(match a
|
||||
[`(λ ,a) a]
|
||||
[_ (error "reify-neu: not reifiable")]))
|
||||
|
||||
(define (reify-neu a)
|
||||
(match a
|
||||
[`(if-zero ,a ,b ,c) (list 'if (reify-neu a) (reify b) (extract-body (reify c)))]
|
||||
[`(app ,u ,v) (list 'app (reify-neu u) (reify v))]
|
||||
[`(var ,i) a]))
|
||||
|
||||
|
@ -51,7 +84,6 @@
|
|||
(define (normalize a)
|
||||
(reify (interp a idsub)))
|
||||
|
||||
|
||||
(define (subst ρ a)
|
||||
(match a
|
||||
[`(var ,i) (ρ i)]
|
||||
|
@ -84,6 +116,10 @@
|
|||
;; Coquand's algorithm but for β-normal forms
|
||||
(define (η-eq? a b)
|
||||
(match (list a b)
|
||||
['(zero zero) true]
|
||||
[`((succ ,a) (succ ,b)) (η-eq? a b)]
|
||||
[`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0))
|
||||
(and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))]
|
||||
[`((λ ,a) (λ ,b)) (η-eq? a b)]
|
||||
[`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))]
|
||||
[`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)]
|
||||
|
@ -98,11 +134,4 @@
|
|||
(define (β-eq? a b)
|
||||
(equal? (normalize a) (normalize b)))
|
||||
|
||||
(define (tm? a)
|
||||
(match a
|
||||
[`(λ ,a) (tm? a)]
|
||||
[`(app ,a ,b) (and (tm? a) (tm? b))]
|
||||
[`(var ,i) (exact-nonnegative-integer? i)]
|
||||
[_ false]))
|
||||
|
||||
(provide eval-tm eval-tm-strict reify interp normalize tm? η-eq? βη-eq? β-eq?)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue