
Inductive definitions and proofs

June 3, 2025

1 Inductively defined sets

We represent inductively defined sets in the form of a set of inference rules.
Suppose we want to define the set S, each inference rule takes the following
general form

P0 P1 . . . Pn

a ∈ S
R0

Each premise Pi above the horizontal line is a logical formula that either does
not involve S at all or a logical formula of the form b ∈ S where S does not
appear in b.

Each inference rule can be read as an implication that describes the elements
that inhabit the set S. Rule R0, for example, can be read as the proposition
(P0 ∧ P1 . . . ∧ Pn) → a ∈ S. When the premise is empty, the statement simply
states that the conclusion is true. Note that shuffling the order of P0 . . . Pn

doesn’t change the definition of the set S since the underlying proposition should
remain equivalent.

Variables that appear free in each rule are implicitly quantified. As an
example, recall the following rules we have seen in class.

0 ∈ S
R0

n ∈ S

n+ 4 ∈ S
R4

n ∈ S

n+ 6 ∈ S
R6

Here, the proposition corresponding to rule R4 is ∀n ∈ S, n + 4 ∈ S where the
variable n is universally quantified.

An element a is in the set S if and only if there exists a proof of a ∈ S using
the rules. While it’s possible to describe the proofs in English, we can write

1



proofs in the form of derivation trees, a formal mathematical object. Here is an
example of a derivation tree that shows 10 ∈ S.

0 ∈ S
R0

4 ∈ S
R4

10 ∈ S
R6

The derivation tree for 10 ∈ S looks more like a sequence than a tree because
the rules for the set S only contain at most one premise.

Consider the following inductive definition of the set beautiful.

0 ∈ beautiful
B0

3 ∈ beautiful
B3

5 ∈ beautiful
B5

n ∈ beautiful m ∈ beautiful

m+ n ∈ beautiful
Bn

Here is a derivation tree for 11 ∈ beautiful.

3 ∈ beautiful
B3

3 ∈ beautiful
B3

6 ∈ beautiful
Bn

5 ∈ beautiful
B5

11 ∈ beautiful
Bn

Since Bn has two premises, invoking Bn to prove 11 ∈ beautiful requires us
to provide two subproofs/subtrees 6 ∈ beautiful and 5 ∈ beautiful.

Exercise 1. Write a derivation tree for 9 ∈ beautiful using only rules B3 and
Bn.

Exercise 2. Write a derivation tree for 9 ∈ beautiful that involves at least one
usage of rule B0.

2 Inductive proofs

Given a set S defined by some inference rules, rule induction says that to show
that S is a subset of some set R, it suffices to show for each inference rule
defining S, the proposition corresponds to the inference rule after replacing S
by R holds.

2



For example, given some set R, to prove that beautiful ∈ R, it suffices to
show that the propositions correspond to the following rules hold:

0 ∈ R
B0

3 ∈ R
B3

5 ∈ R
B5

n ∈ R m ∈ R

m+ n ∈ R
Bn

Thus, to show that S ⊆ R, the rule of induction says it is sufficient to prove
the following statements.

• 0 ∈ R

• 3 ∈ R

• 5 ∈ R

• ∀nm,n ∈ R ∧m ∈ R =⇒ m+ n ∈ R

Exercise 3. Prove by induction that S only contains natural numbers. For
each rule, explicitly write down the statement you need to prove and then show
why it’s true.

Exercise 4. Try proving that S only contains odd numbers, which is a false
statement as 3+3 = 6 ∈ S. Again, for each rule, write down the statement you
need to prove. Which rule fails to hold?

Suppose we want to prove the statement ∀a ∈ S, P (a) where P is a predicate
over objects. We can prove the statement through the induction principle by
instantiate R with the set {a | P (a)}. Thus, to prove ∀a ∈ S, P (a), it suffices
to show the following statements.

• P (0) is true.

• P (3) is true.

• P (5) is true.

• ∀nm,P (n) ∧ P (m) =⇒ P (m+ n) is true.

For example, to prove that all elements in beautiful are linear combinations
of 3 and 5, we can instantiate P with P (a) := ∃m n ∈ N, a = 3m + 5n. Then
by induction, it suffices to show that the following statements hold.

3



• 0 is a linear combination of 3 and 5.

• 3 is a linear combination of 3 and 5.

• 5 is a linear combination of 3 and 5.

• If n and m are both linear combinations of 3 and 5, then m+n is a linear
combination of 3 and 5.

Don’t forget that we are not done yet! The above process helps us find what
needs to be proven by invoking the induction principle. We still need to check
that all the propositions hold.

As you get more familiar with inductive proofs, you should be able to perform
the rewriting from beautiful to R in your head and directly prove the statement
that corresponds to each rule. With more complicated definitions, however, it
is sometimes useful to explicitly write down the induction principle.

Of course, so far we are only talking about how to obtain the induction
principle, but we never asked why this style of reasoning is correct. Justifying
the validity of induction is a topic we will cover later in class.

3 Inductively defined data types

In this section, we use the knowledge developed in section 1 to define various data
types that will be useful when defining languages. As we will see, inductively
defined data types really are just an instance of the inductively defined sets we
have already seen, except that we expect them to satisfy some constraints so we
can define recursive functions over them.

3.1 Sets of Symbols

In set theory, the notion of strings or symbols is not a primitive concept. How-
ever, as we are defining programming languages, it is convenient to assume that
there exists a set named Symbol that consist of strings from the English and
Greek alphabet.

It is important to distinguish between symbols and metavariables that we
can quantify over. Therefore, to avoid ambiguity, we will sometimes preceed
strings from the set Symbol with a single quote ′. Using this notation, we have
′λ,′ foo,′ bar,′ plus,′ + ∈ Symbol. Importantly, the symbol ′+ is really a string
and is not to be confused with the mathematical function + over numbers.

Here is an example of why the distinction between symbols and metavariables
are important. Consider the following two rules.

4



n ∈ N
n ∈ S

Rn

′n ∈ S
R′

n

Rule Rn corresponds to the universally quantified statement ∀n ∈ N, n ∈ S,
which says all natural numbers n are in the set S. Rule R′

n, on the other hand,
corresponds to ′n ∈ S, the proposition that says S contains the single symbol
′n.

3.2 Inductively Defined Lists and Recursive Functions

Given a set A, we inductively define the set ListA with the following two infer-
ence rules.

′Nil ∈ ListA
L0

a ∈ A l ∈ ListA

(a, l) ∈ ListA
L1

Thus, an element in ListA should take the general form (a0, (a1, . . . , (an,
′Nil)))

where a0, . . . , an ∈ A. We write (a0 a1 . . . an) as a shorthand notation for the
same list to avoid nested parentheses. Note that when the list is empty, we use
the notation () to denote the symbol ′Nil. For example, we write (1 2) for the
2-element list of natural numbers instead of (1, (2, ′Nil)).

Given a non-empty list (a, l) ∈ ListA, applying the projection operator π1

gives us π1(a, l) = a ∈ A, the head of the list, whereas applying the projection
operator π2 gives us π2(a, l) = l, the remainder of the list.

However, there are more interesting functions that we’d like to define over
lists. For example, an operation that computes the length of a list, or a function
that appends two lists. That’s where recursive definitions become useful.

The principle of recursion says to define a function f from ListA to some
set T , it suffices to provide two equations about f , one for rule L0 and one for
rule L1.

f(′Nil) = e0

f((a, l)) = e1

The expression e0 must not contain any reference to f . The expression e1 can
refer to its arguments a and l and f(l).

Following the recursion principle, we can define the length function as fol-
lows.

length(′Nil) = 0

5



length((a, l)) = 1 + length(l)

Exercise 5. Recall that (1 2 3) is a shorthand for (1, (2, (3, ′Nil))). Following
the equations of the length function, show that length((1 2 3)) = 3.

Exercise 6. Consider the following equations.

g(′Nil) = 0

g((a, l)) = 1 + g((a, l))

Explain why these two equations do not induce a valid recursive definition for
a function g : ListA → N.

In particular, explain intuitively why applying g to the singleton list (1) fail
to produce a natural number.

Exercise 7. The stutter function takes a list as input and produces a list with
double the size by duplicating each element. For example, given the list (1 2 3)
as input, we want stutter to produce the list (1 1 2 2 3 3) as its output.

Write a recursive definition of stutter : ListA → ListA by filling out the
right hand side of the following equations.

stutter(′Nil) = . . .

stutter((a, l)) = . . .

Exercise 8. By rule induction, show that for all a ∈ ListA, length(stutter(a)) =
2 · length(a).

In Exercises 1 and 2, we have seen that there can be multiple derivation trees
that prove 9 ∈ beautiful. The definition of ListA, on the other hand, satisfies
the following uniqueness property about derivation trees.

Proposition 1. For all a ∈ ListA, there exists a unique derivation tree with a
conclusion that a ∈ ListA.

Proof. We proceed by rule induction over ListA, which requires us to show the
following two statements.

• There is a unique derivation tree for ′Nil ∈ ListA.

• If a ∈ A and there is a unique derivation tree for l ∈ ListA, then there
exists a unique derivation tree for (a, l) ∈ ListA.

Exercise 9. Finish off the proof above by showing that both statements hold.

Remark. In most cases, the uniqueness derivation tree property can be quickly
checked by looking at the conclusion of each rule. In the case of ListA,

′Nil and
(a, l) are clearly different objects so given a ∈ ListA there will be no ambiguity
which rule can fire.

6



The uniqueness of derivation trees is essential for the recursion principle to
work. Consider, for example, the following set of recursive equations for the set
beautiful.

h(0) = 1

h(3) = 1

h(5) = 1

h(m+ n) = h(m) + h(n)

The equations do not induce a function because a single input can correspond
to multiple different outputs: h(3) = h(0) + h(3) = 1 + 1 = 2, h(3) = 1.

Exercise 10. Consider the following definition of the set Even.

0 ∈ Even
E0

n ∈ Even

n+ 2 ∈ Even
E1

• First, show that there can be only one derivation tree for every proof of
a ∈ Even.

• Next, write a recursive function p from Even to N that divides the input
by 2.

• Finally, use rule induction to show the correctness of p by proving ∀a ∈
Even, 2 · p(a) = a

4 An Arithmetic Language

In this section, we use the concepts we have learned in previous sections to
define a simple language that describes arithmetic.

4.1 Syntax

The arithmetic language allows us to write expressions that you can write in a
simple calculator:

4 + (9 ∗ 7)

(3 ∗ 3) ∗ 3

However, instead of working with strings of characters, we skip the parsing step
completely and define the abstract syntax tree (AST) of the language as an
inductively defined sets. By working with ASTs, we no longer have to worry
about operator precedence and parentheses while reasoning about the language.
In practice, a parser is needed to turn well-formed strings representing algorith-
mic expressions into their corresponding ASTs.

7



The set Arith is defined by the following set of rules. For simplicity, we
only consider multiplication and addition as our only operators.

n ∈ N
n ∈ Arith

A0

a ∈ Arith b ∈ Arith

(′Add a b) ∈ Arith
A1

a ∈ Arith b ∈ Arith

(′Mult a b) ∈ Arith
A2

The arithmetic expression is either a number (by rule A0), or a 3-element list
containing a symbol ′Add or ′Mult and two subexpressions a and b.

For consicion, I’ll ignore the ′ symbol and the parentheses when there’s no
ambiguity. For example, we writeAdd (Mult 1 2) 3 as an arithmetic expression
that corresponds to (1 · 2) + 3.

Are Add (Mult 1 2) 3 and 5 equal arithmetic expressions? The answer is
that it depends. Without first assigning meaning to our language, we can only
revert back to the set-theoretic equality, where the number 5 is distinct from
Add (Mult 1 2) 3, which is really a list of three elements.

However, morally, we’d like to define an equivalence relation that identifies
these two terms since they both represent the number 5. Such an equivalence
relation can be specified by defining semantics for our language.

In the following sections, we will explore two different ways of assigning
meaning to our language.

4.2 Denotational Semantics

Denotational semantics consist of a function that maps the syntactic terms into
something that we already understand and have an existing notion of equality.
In the case of Arith, we can assign a denotational semantics by defining a
recursive function from Arith to N.

Of course, before we start writing the recursive equations, we should check
that Arith has the property that there is at most one derivation tree for each
element in it. This is trivially the case since the number n and the lists Add a b
and Mult a b are clearly distinct from one another. Now we define the function
I : Arith → N with the following equations.

I(n) = n

I(Add a b) = I(a) + I(b)

I(Mult a b) = I(a) · I(b)

From the definition of I, we define the relation ≃⊆ Arith×Arith as follows.

a ≃ b := I(a) = I(b)

8



Note that the = in I(a) = I(b) is the set-theoretic equality, which behaves the
way we expect over natural numbers.

Exercise 11. Show that Add (Mult 1 2) 3 ≃ 5.

Exercise 12. Let mirror be a recursive function from Arith to Arith defined
as follows.

mirror(n) = n

mirror(Add a b) = Add (mirror(b)) (mirror(a))

mirror(Mult a b) = Mult (mirror(b)) (mirror(a))

Given an arithmetic expression representing 4 + (7 · 8) as input, what does
the mirror function return? Try out a few more examples to get a better
understanding of what the function does, then prove through induction that
mirror is idempotent, meaning that ∀a ∈ Arith,mirror(mirror(a)) = a.

Finally, show that mirror preserves the meaning of arithmetic expressions,
meaning that ∀a ∈ Arith, a ≃ mirror(a).

Exercise 13. We can extend our arithmetic language with the minus operator
by adding the following rule.

a ∈ Arith b ∈ Arith

Minus a b ∈ Arith
A3

Extend the interpretation function I with an equation for this new rule. Prove
that the mirror function Exercise 12 is still idempotent. Next, find an arith-
metic expression a such that mirror(a) ≃ a doesn’t hold.

4.3 Small-Step Operational Semantics

We define the small-step operational semantics for Arith by defining the fol-
lowing inductively defined relation Step ⊆ Arith×Arith.

9



m ∈ N n ∈ N
(Add m n,m+ n) ∈ Step

S0

m ∈ N n ∈ N
(Mult m n,m · n) ∈ Step

S1

a /∈ N (a, a′) ∈ Step

(Add a b,Add a′ b) ∈ Step
S2

a ∈ N b /∈ N (b, b′) ∈ Step

(Add a b,Add a b′) ∈ Step
S3

a /∈ N (a, a′) ∈ Step

(Mult a b,Mult a′ b) ∈ Step
S4

a ∈ N b /∈ N (b, b′) ∈ Step

(Mult a b,Mult a b′) ∈ Step
S5

Exercise 14. Show that (Add (Mult 3 4) (Add 2 3),Add 12 (Add 2 3)) ∈
Step by explicitly writing down the derivation tree.

Next, explain why (Add (Mult 3 4) (Add 2 3),Add (Mult 3 4) 5) ∈ Step
is not true by showing that none of the rules can be applied.

In PL papers, a directed arrow such as ⇝ is used to name the stepping
relation. Furthermore, the infix notation a ⇝ b is used to denote (a, b) ∈⇝.
Using this new notation, we can write the operational semantics in a more
readable format. The induction principles should work the same way, but if you

10



ever get confused, you can always rewrite a⇝ b into (a, b) ∈⇝.

m ∈ N n ∈ N
Add m n⇝ m+ n

S0

m ∈ N n ∈ N
Mult m n⇝ m · n

S1

a /∈ N a⇝ a′

Add a b⇝ Add a′ b
S2

a ∈ N b /∈ N b⇝ b′

(Add a b,Add a b′)
S3

a /∈ N a⇝ a′

Mult a b⇝Mult a′ b
S4

a ∈ N b /∈ N b⇝ b′

Mult a b⇝Mult a b′
S5

4.4 BNF notation

5 Inductively Defined Functions

11


