
Inductive definitions and proofs

June 26, 2025

1 Inductively defined sets

We represent inductively defined sets in the form of a set of inference rules.
Suppose we want to define the set S, each inference rule takes the following
general form

P0 P1 . . . Pn

a ∈ S
R0

Each premise Pi above the horizontal line is a logical formula that either does
not involve S at all or a logical formula of the form b ∈ S where S does not
appear in b.

Each inference rule can be read as an implication that describes the elements
that inhabit the set S. Rule R0, for example, can be read as the proposition
(P0 ∧ P1 . . . ∧ Pn) → a ∈ S. When the premise is empty, the statement simply
states that the conclusion is true. Note that shuffling the order of P0 . . . Pn

doesn’t change the definition of the set S since the underlying proposition should
remain equivalent.

Variables that appear free in each rule are implicitly quantified. As an
example, recall the following rules we have seen in class.

0 ∈ S
R0

n ∈ S

n+ 4 ∈ S
R4

n ∈ S

n+ 6 ∈ S
R6

Here, the proposition corresponding to rule R4 is ∀n ∈ S, n + 4 ∈ S where the
variable n is universally quantified.

An element a is in the set S if and only if there exists a proof of a ∈ S using
the rules. While it’s possible to describe the proofs in English, we can write

1

proofs in the form of derivation trees, a formal mathematical object. Here is an
example of a derivation tree that shows 10 ∈ S.

0 ∈ S
R0

4 ∈ S
R4

10 ∈ S
R6

The derivation tree for 10 ∈ S looks more like a sequence than a tree because
the rules for the set S only contain at most one premise.

Consider the following inductive definition of the set beautiful.

0 ∈ beautiful
B0

3 ∈ beautiful
B3

5 ∈ beautiful
B5

n ∈ beautiful m ∈ beautiful

m+ n ∈ beautiful
Bn

Here is a derivation tree for 11 ∈ beautiful.

3 ∈ beautiful
B3

3 ∈ beautiful
B3

6 ∈ beautiful
Bn

5 ∈ beautiful
B5

11 ∈ beautiful
Bn

Since Bn has two premises, invoking Bn to prove 11 ∈ beautiful requires us
to provide two subproofs/subtrees 6 ∈ beautiful and 5 ∈ beautiful.

Exercise 1. Write a derivation tree for 9 ∈ beautiful using only rules B3 and
Bn.

Exercise 2. Write a derivation tree for 9 ∈ beautiful that involves at least one
usage of rule B0.

2 Inductive proofs

Given a set S defined by some inference rules, rule induction says that to show
that S is a subset of some set R, it suffices to show for each inference rule
defining S, the proposition corresponds to the inference rule after replacing S
by R holds.

2

For example, given some set R, to prove that beautiful ∈ R, it suffices to
show that the propositions correspond to the following rules hold:

0 ∈ R
B0

3 ∈ R
B3

5 ∈ R
B5

n ∈ R m ∈ R

m+ n ∈ R
Bn

Thus, to show that S ⊆ R, the rule of induction says it is sufficient to prove
the following statements.

• 0 ∈ R

• 3 ∈ R

• 5 ∈ R

• ∀nm,n ∈ R ∧m ∈ R =⇒ m+ n ∈ R

Exercise 3. Prove by induction that S only contains natural numbers. For
each rule, explicitly write down the statement you need to prove and then show
why it’s true.

Exercise 4. Try proving that S only contains odd numbers, which is a false
statement as 3+3 = 6 ∈ S. Again, for each rule, write down the statement you
need to prove. Which rule fails to hold?

Suppose we want to prove the statement ∀a ∈ S, P (a) where P is a predicate
over objects. We can prove the statement through the induction principle by
instantiate R with the set {a | P (a)}. Thus, to prove ∀a ∈ S, P (a), it suffices
to show the following statements.

• P (0) is true.

• P (3) is true.

• P (5) is true.

• ∀nm,P (n) ∧ P (m) =⇒ P (m+ n) is true.

For example, to prove that all elements in beautiful are linear combinations
of 3 and 5, we can instantiate P with P (a) := ∃m n ∈ N, a = 3m + 5n. Then
by induction, it suffices to show that the following statements hold.

3

• 0 is a linear combination of 3 and 5.

• 3 is a linear combination of 3 and 5.

• 5 is a linear combination of 3 and 5.

• If n and m are both linear combinations of 3 and 5, then m+n is a linear
combination of 3 and 5.

Don’t forget that we are not done yet! The above process helps us find what
needs to be proven by invoking the induction principle. We still need to check
that all the propositions hold.

As you get more familiar with inductive proofs, you should be able to perform
the rewriting from beautiful to R in your head and directly prove the statement
that corresponds to each rule. With more complicated definitions, however, it
is sometimes useful to explicitly write down the induction principle.

Of course, so far we are only talking about how to obtain the induction
principle, but we never asked why this style of reasoning is correct. Justifying
the validity of induction is a topic we will cover later in class.

3 Inductively defined data types

In this section, we use the knowledge developed in section 1 to define various data
types that will be useful when defining languages. As we will see, inductively
defined data types really are just an instance of the inductively defined sets we
have already seen, except that we expect them to satisfy some constraints so we
can define recursive functions over them.

3.1 Sets of Symbols

In set theory, the notion of strings or symbols is not a primitive concept. How-
ever, as we are defining programming languages, it is convenient to assume that
there exists a set named Symbol that consist of strings from the English and
Greek alphabet.

It is important to distinguish between symbols and metavariables that we
can quantify over. Therefore, to avoid ambiguity, we will sometimes preceed
strings from the set Symbol with a single quote ′. Using this notation, we have
′λ,′ foo,′ bar,′ plus,′ + ∈ Symbol. Importantly, the symbol ′+ is really a string
and is not to be confused with the mathematical function + over numbers.

Here is an example of why the distinction between symbols and metavariables
are important. Consider the following two rules.

4

n ∈ N
n ∈ S

Rn

′n ∈ S
R′

n

Rule Rn corresponds to the universally quantified statement ∀n ∈ N, n ∈ S,
which says all natural numbers n are in the set S. Rule R′

n, on the other hand,
corresponds to ′n ∈ S, the proposition that says S contains the single symbol
′n.

3.2 Inductively Defined Lists and Recursive Functions

Given a set A, we inductively define the set ListA with the following two infer-
ence rules.

′Nil ∈ ListA
L0

a ∈ A l ∈ ListA

(a, l) ∈ ListA
L1

Thus, an element in ListA should take the general form (a0, (a1, . . . , (an,
′Nil)))

where a0, . . . , an ∈ A. We write (a0 a1 . . . an) as a shorthand notation for the
same list to avoid nested parentheses. Note that when the list is empty, we use
the notation () to denote the symbol ′Nil. For example, we write (1 2) for the
2-element list of natural numbers instead of (1, (2, ′Nil)).

Given a non-empty list (a, l) ∈ ListA, applying the projection operator π1

gives us π1(a, l) = a ∈ A, the head of the list, whereas applying the projection
operator π2 gives us π2(a, l) = l, the remainder of the list.

However, there are more interesting functions that we’d like to define over
lists. For example, an operation that computes the length of a list, or a function
that appends two lists. That’s where recursive definitions become useful.

The principle of recursion says to define a function f from ListA to some
set T , it suffices to provide two equations about f , one for rule L0 and one for
rule L1.

f(′Nil) = e0

f((a, l)) = e1

The expression e0 must not contain any reference to f . The expression e1 can
refer to its arguments a and l and f(l).

Following the recursion principle, we can define the length function as fol-
lows.

length(′Nil) = 0

5

length((a, l)) = 1 + length(l)

Exercise 5. Recall that (1 2 3) is a shorthand for (1, (2, (3, ′Nil))). Following
the equations of the length function, show that length((1 2 3)) = 3.

Exercise 6. Consider the following equations.

g(′Nil) = 0

g((a, l)) = 1 + g((a, l))

Explain why these two equations do not induce a valid recursive definition for
a function g : ListA → N.

In particular, explain intuitively why applying g to the singleton list (1) fail
to produce a natural number.

Exercise 7. The stutter function takes a list as input and produces a list with
double the size by duplicating each element. For example, given the list (1 2 3)
as input, we want stutter to produce the list (1 1 2 2 3 3) as its output.

Write a recursive definition of stutter : ListA → ListA by filling out the
right hand side of the following equations.

stutter(′Nil) = . . .

stutter((a, l)) = . . .

Exercise 8. By rule induction, show that for all a ∈ ListA, length(stutter(a)) =
2 · length(a).

In Exercises 1 and 2, we have seen that there can be multiple derivation trees
that prove 9 ∈ beautiful. The definition of ListA, on the other hand, satisfies
the following uniqueness property about derivation trees.

Proposition 1. For all a ∈ ListA, there exists a unique derivation tree with a
conclusion that a ∈ ListA.

Proof. We proceed by rule induction over ListA, which requires us to show the
following two statements.

• There is a unique derivation tree for ′Nil ∈ ListA.

• If a ∈ A and there is a unique derivation tree for l ∈ ListA, then there
exists a unique derivation tree for (a, l) ∈ ListA.

Exercise 9. Finish off the proof above by showing that both statements hold.

Remark. In most cases, the uniqueness derivation tree property can be quickly
checked by looking at the conclusion of each rule. In the case of ListA,

′Nil and
(a, l) are clearly different objects so given a ∈ ListA there will be no ambiguity
which rule can fire.

6

The uniqueness of derivation trees is essential for the recursion principle to
work. Consider, for example, the following set of recursive equations for the set
beautiful.

h(0) = 1

h(3) = 1

h(5) = 1

h(m+ n) = h(m) + h(n)

The equations do not induce a function because a single input can correspond
to multiple different outputs: h(3) = h(0) + h(3) = 1 + 1 = 2, h(3) = 1.

Exercise 10. Consider the following definition of the set Even.

0 ∈ Even
E0

n ∈ Even

n+ 2 ∈ Even
E1

• First, show that there can be only one derivation tree for every proof of
a ∈ Even.

• Next, write a recursive function p from Even to N that divides the input
by 2.

• Finally, use rule induction to show the correctness of p by proving ∀a ∈
Even, 2 · p(a) = a

4 An Arithmetic Language

In this section, we use the concepts we have learned in previous sections to
define a simple language that describes arithmetic.

4.1 Syntax

The arithmetic language allows us to write expressions that you can write in a
simple calculator:

4 + (9 ∗ 7)

(3 ∗ 3) ∗ 3

However, instead of working with strings of characters, we skip the parsing step
completely and define the abstract syntax tree (AST) of the language as an
inductively defined sets. By working with ASTs, we no longer have to worry
about operator precedence and parentheses while reasoning about the language.
In practice, a parser is needed to turn well-formed strings representing algorith-
mic expressions into their corresponding ASTs.

7

The set Arith is defined by the following set of rules. For simplicity, we
consider multiplication and addition as our only operators.

n ∈ N
n ∈ Arith

A0

a ∈ Arith b ∈ Arith

(′Add a b) ∈ Arith
A1

a ∈ Arith b ∈ Arith

(′Mult a b) ∈ Arith
A2

The arithmetic expression is either a number (by rule A0), or a 3-element list
containing a symbol ′Add or ′Mult and two subexpressions a and b.

For consicion, I’ll ignore the ′ symbol and the parentheses when there’s no
ambiguity. For example, we writeAdd (Mult 1 2) 3 as an arithmetic expression
that corresponds to (1 · 2) + 3.

Are Add (Mult 1 2) 3 and 5 equal arithmetic expressions? The answer is
that it depends. Without first assigning meaning to our language, we can only
revert back to the set-theoretic equality, where the number 5 is distinct from
Add (Mult 1 2) 3, which is really a list of three elements.

However, morally, we’d like to define an equivalence relation that identifies
these two terms since they both represent the number 5. Such an equivalence
relation can be specified by defining semantics for our language.

In the following sections, we will explore two different ways of assigning
meaning to our language.

4.2 Denotational Semantics

Denotational semantics consist of a function that maps the syntactic terms into
something that we already understand and have an existing notion of equality.
In the case of Arith, we can assign a denotational semantics by defining a
recursive function from Arith to N.

Of course, before we start writing the recursive equations, we should check
that Arith has the property that there is at most one derivation tree for each
element in it. This is trivially the case since the number n and the lists Add a b
and Mult a b are clearly distinct from one another. Now we define the function
I : Arith → N with the following equations.

I(n) = n

I(Add a b) = I(a) + I(b)

I(Mult a b) = I(a) · I(b)

From the definition of I, we define the relation ≃⊆ Arith×Arith as follows.

a ≃ b := I(a) = I(b)

8

Note that the = in I(a) = I(b) is the set-theoretic equality, which behaves the
way we expect over natural numbers.

Exercise 11. Show that Add (Mult 1 2) 3 ≃ 5.

Exercise 12. Let mirror be a recursive function from Arith to Arith defined
as follows.

mirror(n) = n

mirror(Add a b) = Add (mirror(b)) (mirror(a))

mirror(Mult a b) = Mult (mirror(b)) (mirror(a))

Given an arithmetic expression representing 4 + (7 · 8) as input, what does
the mirror function return? Try out a few more examples to get a better
understanding of what the function does, then prove through induction that
mirror is idempotent, meaning that ∀a ∈ Arith,mirror(mirror(a)) = a.

Finally, show that mirror preserves the meaning of arithmetic expressions,
meaning that ∀a ∈ Arith, a ≃ mirror(a).

Exercise 13. We can extend our arithmetic language with the minus operator
by adding the following rule.

a ∈ Arith b ∈ Arith

Minus a b ∈ Arith
A3

Extend the interpretation function I with an equation for this new rule. Prove
that the mirror function Exercise 12 is still idempotent. Next, find an arith-
metic expression a such that mirror(a) ≃ a doesn’t hold.

4.3 Small-Step Operational Semantics

We define the small-step operational semantics for Arith by defining the fol-
lowing inductively defined relation Step ⊆ Arith×Arith.

9

m ∈ N n ∈ N
(Add m n,m+ n) ∈ Step

S0

m ∈ N n ∈ N
(Mult m n,m · n) ∈ Step

S1

a /∈ N (a, a′) ∈ Step

(Add a b,Add a′ b) ∈ Step
S2

a ∈ N b /∈ N (b, b′) ∈ Step

(Add a b,Add a b′) ∈ Step
S3

a /∈ N (a, a′) ∈ Step

(Mult a b,Mult a′ b) ∈ Step
S4

a ∈ N b /∈ N (b, b′) ∈ Step

(Mult a b,Mult a b′) ∈ Step
S5

Exercise 14. Show that (Add (Mult 3 4) (Add 2 3),Add 12 (Add 2 3)) ∈
Step by explicitly writing down the derivation tree.

Next, explain why (Add (Mult 3 4) (Add 2 3),Add (Mult 3 4) 5) ∈ Step
is not true by showing that none of the rules can be applied.

In PL papers, a directed arrow such as ⇝ is used to name the stepping
relation. Furthermore, the infix notation a ⇝ b is used to denote (a, b) ∈⇝.
Using this new notation, we can write the operational semantics in a more
readable format. The induction principles should work the same way, but if you
ever get confused, you can always rewrite a ⇝ b into (a, b) ∈⇝, which can be

10

useful when you are trying to figure out the induction principles.

m ∈ N n ∈ N
Add m n⇝ m+ n

S0

m ∈ N n ∈ N
Mult m n⇝ m · n

S1

a /∈ N a⇝ a′

Add a b⇝ Add a′ b
S2

a ∈ N b /∈ N b⇝ b′

Add a b⇝ Add a b′
S3

a /∈ N a⇝ a′

Mult a b⇝Mult a′ b
S4

a ∈ N b /∈ N b⇝ b′

Mult a b⇝Mult a b′
S5

4.4 A more concise representation

In this section, we present a more concise way of presenting the rules. First, we
define Op to be the finite set of symbols {Add,Mult} (the ′ mark is omitted
for concision). Of course, we can also present it inductively, though it’s not
quite necessary since the set is finite.

Mult ∈ Op Add ∈ Op

The syntax of the arithmetic language is then defined as follows.

n ∈ N
n ∈ Arith′ A′

0

op ∈ Op a ∈ Arith′ b ∈ Arith′

op a b ∈ Arith′ A′
1

It is not hard to show that Arith′ defines the exact same set elements as
Arith through induction (you would need to do it twice for each direction).

Denotational semantics for Arith′ can be broken in two steps. First, we
define the function Io that maps symbols in the set op to their corresponding
binary functions over natural numbers.

Io(Mult) = x y 7→ x · y
Io(Add) = x y 7→ x+ y

11

Then we can define our interpretation function I ′ with the following recursive
equations:

I ′(n) = n, where n ∈ N
I ′(op a b) = f(I ′(a), I ′(b)), where f = Io(op)

Exercise 15. Show that I ′(Add (Mult 1 2) 3) = 5 by carefully unfolding the
definitions of I ′ and Io.

Remark. The function Io : Op → (N×N → N) takes an element from the set
Op and returns a binary operator over numbers. Functions that takes another
function as input or returns another function as output are referred to as higher-
order functions. In the definition of I ′(op a b), I introduced the local definition f
so the whole concept of functions returning other functions feel less intimidating,
but if you are comfortable, you can always inline the definition of f and directly
write the recursive case as:

I ′(op a b) = (Io(op))(I
′(a), I ′(b))

The operational semantics can benefit the most from the concise definition
as we can group multiple similar cases together.

op ∈ Op m ∈ N n ∈ N
op m n⇝ (Io(op))(m,n)

S′
0

op ∈ Op a /∈ N a⇝ a′

op a b⇝ op a′ b
S′
1

op ∈ Op a ∈ N b /∈ N b⇝ b′

op a b⇝ op a b′
S2’

Extending our language with the minus operator is now as simple as extend-
ing the setOp as {Mult,Minus,Add} and adding a new case for Io(Minus) =
x y 7→ x − y. The operational semantics and the denotational semantics for
Arith′ are now capable of handling the minus operation.

4.5 BNF notation

A different way of specifying the syntax of Arith is by using the Backus-Naur
form (a.k.a the BNF notation). I won’t go over what precisely constitutes a
BNF grammar specification, but with the tools we have developed so far, we
can view BNF notation as a concise way of writing inductively defined data
types / languages.

12

Here is how Arith (the concise version in the previous section) can be spec-
ified using BNF notation.

n ∈ N
op := Mult | Add | Minus

a := op a a | n

Each clause t := t0 | t1 . . . | tn can be read as t is a metavariable ranging over
an inductive set whose elements are of the form one of the tis.

For example, the metavariable op in this case ranges over the finite set con-
taining {Mult,Add,Minus}.

The metavariable a ranges over the set of arithmetic terms, which is either an
operator op followed by two expressions a of the same set, or a natural number.

The choice of metavariable is important because of the implicit information
associated with the set that the metavariable ranges over. For example, the
definition a := op b a does not make sense because we don’t have a clause of
the form b :=

It is possible, however, to assign multiple metavariable names to the same
clause. For example, the clause a, b := op a b | n is equivalent to the clause
a := op a a | n. In the former, it’s understood that both a and b range over the
same set of terms that we are defining.

Exercise 16. Write the inductive definition that corresponds to the following
BNF grammar for the untyped lambda calculus, which we will cover later in
class.

x ∈ Symbol

t := x | Lam x t | App t t

Explicitly spelling out the names of the operators as Mult or Add is very
tedious. In some textbooks, you might see a BNF grammar for the arithmetic
language presented as follows.

n ∈ N
a := a+ a | a · a | n

The same notation for usual arithmetic is reused for specifying the grammar
of the language we are trying to define. This style of definition is quite common
in practice, but can be very confusing.

For example, we can immediately tell that Mult 1 2 is a syntax tree of the
language we are defining, and it is a distinct tree from Mult 2 1. However, if
we use the notation from above, how do we know if 1 · 2 and 2 · 1 are equal? If
we read 1 · 2 and 2 · 1 as syntax trees, then they are not the same. However,
if we read 1 · 2 and 2 · 1 as applications of the multiplication operator on the
numbers 1 and 2, then they both are the number 2. This ambiguity issue can
be avoided by choosing the syntax carefully to not collide with language from

13

the metatheory (set theory or Rocq), or simply clarifying whenever ambiguity
arises.

As an example of notation usage, the untyped lambda calculus from Exer-
cise 16 can be written as follows.

x ∈ Symbol

t := x | λx.t | t t

Here, the . that appears in λx.t does not have any meaning. It’s simply there
to make lambda abstractions look prettier. In fact, both . and λ are implicitly
assumed to be symbols as there are no clauses of the form . := . . . or λ :=

Back to the example with arithmetic expressions. We can rewrite the BNF
grammar more concisely as follows.

n ∈ N
◦ := + | ·
a := a ◦ a | n

In this definition, · is not just a symbol, but a metavariable that ranges over −
and +. Thus, the language contains expressions of the form 3 + 4, 9 · 3 but not
3 ◦ 4.

Suppose instead we chose to define the grammar as follows.

n ∈ N
a := a ◦ a | n

Then ◦ is implicitly treated as a symbol, and our language only contains ex-
pressions of the shape 3 ◦ (4 ◦ 5) but not 3 + (4 + 5).

4.6 Transitive reflexive closure

The small-step semantics only allows us to take one step at a time. By taking
the transitive and reflexive closure of the stepping relation, we can talk about
how an arithmetic expression can step into another expression with 0 or more
steps.

We consider more generally a relation R ⊆ A× A for some arbitrary set A.
The transitive reflexive closure of R, which we denote R∗, is defined inductively
as follows.

a ∈ A

(a, a) ∈ R∗ Refl

(a, b) ∈ R (b, c) ∈ R∗

(a, c) ∈ R∗ Step

14

Exercise 17. Prove that R∗ is transitive. That is, for all a b and c, if (a, b) ∈ R∗

and (b, c) ∈ R∗, then (a, c) ∈ R∗.
The proof should proceed by induction over the derivation of (a, b) ∈ R∗.

However, one thing that is left ambiguous is whether c is fixed.
Formally, the statement takes the form:

∀a b c.(a, b) ∈ R∗ ∧ (b, c) ∈ R∗ → (a, c) ∈ R∗

To invoke the induction principle, the statement must be of the form ∀a b.(a, b) ∈
R∗ →

Here, one way to proceed is to first assume c ∈ A, and then apply induction
hypothesis on the statement ∀a b.(a, b) ∈ R∗ → (b, c) ∈ R∗ → (a, c) ∈ R∗.

Alternatively, we leave the for all quantified c in our statement, and invoke
the induction principle on the statement ∀a b.(a, b) ∈ R∗ → ∀c.(b, c) ∈ R∗ →
(a, c) ∈ R∗

Try applying the induction principle in the two different ways described
above. Notice how the second version gives a more flexible induction hypothesis,
even though the induction hypotheses for both proofs are sufficient to prove the
desired property.

By taking the transitive closure of the reduction relation ⇝, we can now
relate the denotational semantics and operational semantics.

Definition 1. Let a ∈ Arith. We define the binary relation ⇓⊆ Arith × N
such that a ⇓ n := a⇝∗ n.

Exercise 18. Prove that if a ⇝ b, then I(a) = I(b). There are multiple ways
to prove this property. For this exercise, you are specifically asked to prove by
induction over the derivation of a⇝ b.

Exercise 19. Prove that if a ⇝∗ b, then I(a) = I(b), using the result of
Exercise 18 as a lemma. Conclude that if a ⇓ n, then a ≃ n. (Recall that given
a, b ∈ Arith, a ≃ b := I(a) = I(b))

Exercise 20 (Proof by Inversion). First, show that it is not the case that n⇝ a
for any n ∈ N and a ∈ Arith.

Next, show that given op a b ⇝ c for some arbitrary terms a, b, and c,
precisely one of the three cases hold.

• We have a, b ∈ N and c = Io(op)(a, b).

• There exists some a0 such that a⇝ a0 and c = op a0 b.

• a ∈ N and there exists some b0 such that b⇝ b0 and c = op a b0.

Exercise 21. Show that the stepping relation is deterministic, which can be
written formally as follows.

∀a b c.a⇝ b ∧ a⇝ c =⇒ b = c

15

In other words, the stepping relation is a partial function from Arith to Arith.
First, make sure you have completed Exercise 20 as it teaches you how to

do proof by inversion, which is crucial for completing the proof.
Next, prove the statement by inducting on the derivation of a.
Finally, prove the statement by inducting on the derivation of a ⇝ b. Note

that this requires you to massage the statement into the following form before
applying the induction principle.

∀a b.a⇝ b =⇒ (∀c.a⇝ c =⇒ b = c)

In practice, it is usually nicer to induct over the derivation of a ⇝ b, but
figuring out the induction hypotheses can be tricky.

Exercise 22. Redo Exercise 18 but this time prove the statement by inducting
on the the derivation of a ∈ Arith. Which proof do you find easier?

5 Untyped Lambda Calculus

5.1 Working with anonymous functions

The untyped lambda calculus provides a language where the user can define
anonymous functions and perform function applications. To motivate the un-
typed lambda calculus, it is useful to first get familiar with the concept of
anonymous functions.

Consider the following definition of the function f .

f : N → N
f(x) = x · x+ 1

The function f takes as its input a natural number x and returns as output the
number x · x + 1. We can use the anonymous function notation x 7→ x · x + 1
to fully capture the behavior of the function without assigning it any particular
name. Using the anonymous function notation, every function definition of the
form f(x) = a can be rewritten as f = x 7→ a.

Anonymous functions can be applied as normal functions. For example,
(x 7→ x · x+ 1)(2) = 2 · 2 + 1 = 5. In general, to apply an anonymous function
x 7→ a to some argument b, we replace every occurrence of x with the argument
b in the exact same way we apply a named function.

For clarity, sometimes we can add annotations to our anonymous function
to indicate its domain. For example, we can write x ∈ N 7→ x + 1 to indicate
that the function takes natural numbers as its input.

Exercise 23. Consider the following two anonymous functions.

x ∈ N 7→ x+ x

y ∈ N 7→ y + y

Explain why these functions are equal.

16

Exercise 24. Suppose we have some known constant n ∈ N. We define the
following two functions.

x ∈ N 7→ n

n ∈ N 7→ n

Explain why these two functions are different.

The anonymous function notation can be used to define higher-order func-
tions. The function x 7→ y 7→ yx takes a number x as input, and returns a
function y 7→ yx which lifts its input y to the xth power. More concretely,
applying x 7→ y 7→ yx to 2 gives us the function y 7→ y2, the square function.

Exercise 25. Suppose n ∈ N is a known constant. Consider the following
anonymous function from N to N → N (i.e. for each number n ∈ N, it outputs
a function of type N → N).

m 7→ n 7→ nm

Explain why this function is equal to the x 7→ y 7→ yx function we have discussed
earlier.

Applying x 7→ y 7→ yx to the constant n, we get the result y 7→ yn, a function
that maps its input to the nth power.

Now apply m 7→ n 7→ nm to the constant n, and explain why the result is
not n 7→ nn.

Exercise 26. Suppose we are given sets A, B, and C. We define the compose
function as follows.

compose : (A → B)× (B → C) → (A → C)

compose(f, g) = x 7→ f(g(x))

Instantiate A, B, and C with the set N. Show that

compose(z 7→ 2z + 1, z 7→ 3z) = z 7→ 6z + 1

5.2 Syntax

The syntax for the untyped lambda calculus can be represented as the following
BNF grammar.

x ∈ Symbol

t := x | Lam x t | App t t

We use the notation λx.t to represent Lam x t and t0#t1 to representApp t0 t1.
The pure untyped lambda calculus is a language about anonymous functions.

The lambda form λx.t corresponds to an anonymous function with an argument
x and the application form t0#t1 our usual function applications. As a concrete
example, the term λx.x corresponds to an identity function that returns its
input unchanged.

17

The beauty of the untyped lambda calculus is that more advanced data
structures such as pairs, lists, and numbers can be encoded in the form of
functions, making it a suitable model for computation. However, instead of
convincing you that the lambda term λf.λx.f#x represents the number 1, let’s
simply consider an extended untyped lambda calculus with the grammar from
our Arith language. This extended lambda calculus corresponds more closely
to how programming languages are implemented in practice, where numbers are
treated as their own primitives rather than syntax sugar over functions.

Here is the extended grammar of untyped lambda calculus, which is a fusion
of the grammar of Arith and the pure untyped lambda calculus.

op ∈{Mult,Add}
n ∈N
x ∈Symbol

t :=x | Lam x t | App t t | op t t | n

In our extended language, we can define anonymous functions that perform
arithmetic operations on numbers. For example, the lambda term λx.Mult x x
corresponds to the anonymous function x ∈ N 7→ x · x, which is really just the
square function.

5.3 Small-step operational semantics

Unlike theArith section, we skip the denotational semantics for untyped lambda
calclus since it is surprisingly tricky to define for languages that support func-
tions.

We write Λ to denote the inductively defined set of lambda terms correspond-
ing to the BNF grammar. Before we can specify the operational semantics, we
need to define the substitution function, specified below.

Let t ∈ Λ and x ∈ Symbol, we define substt,x : Λ → Λ recursively over its
input in Figure 1.

We use the notation a{b/x} as a shorthand for substb,x(a).

Exercise 27. Show that the following statements hold, assuming that x and y
are distinct symbols.

• (Add x 3){4/x} = Add 4 3

• (λx.x){4/x} = (λx.x){3/x} = λx.x

• (λy.x){4/x} = λx.4

• (λx.y){y/x} = λx.x

The operational semantics is specified as an inductively defined binary rela-
tion ⇝ over lambda terms.

18

substt,x(y) =

{
t if x = y

y if x ̸= y

substt,x(λy.t0) =

{
λy.t0 if x = y

λy.(substt,x(t0)) if x ̸= y

substt,x(t0#t1) = substt,x(t0)#substt,x(t1)

substt,x(n) = n

substt,x(op t0 t1) = op substt,x(t0) substt,x(t1)

Figure 1: Definition of the substitution function

(λx.a)#b⇝ a{b/x}
L0

a0 ⇝ a1

a0#b⇝ a1#b
L1

op ∈ Op m,n ∈ N
op m n⇝ (Io(op))(m,n)

L2

op ∈ Op a⇝ a′

op a b⇝ op a′ b
L3

op ∈ Op a ∈ N b /∈ N b⇝ b′

op a b⇝ op a b′
L4

Note that rules L0 and L1 are the new rules for handling functions. Rules L2,
L3, and L4 are already present in our compact presentation of the arithmetic
language.

Rule L0 says if we are applying an anonymous function (λx.a) to an argument
b, then we can make progress by replacing the occurrences of x in the body a with
the argument b. The operational semantics precisely capture the substitution
operation required when we apply functions.

When the left hand side of the application is not yet of the form λx.a, the
rule L1 allows us to step the function a0 so we can eventually reach a lambda
term where we can apply rule L0. This is analogous to rules L3 and L4, which
step both arguments of an arithmetic operator to a natural number until we
can apply rule L2 to perform the actual operation.

19

Exercise 28. Recall that ⇝∗ is the transitive and reflexive closure of ⇝, such
that a⇝∗ b holds precisely when a steps to b with ⇝ for 0 or more times.

Write the full reduction sequence for

• (λx.x)#(Add 3 4)⇝∗ 7

• (λx.Mult x x)#(((λx.λy.x)#3)#4)⇝∗ 9

Exercise 29. Explain why the expressions Add 4 (λx.x) and 4#1 fail to take
any steps.

Exercise 30. Consider the following recursive function free : Λ → P(Symbol),
which takes a lambda term and returns a set of symbols.

free(x) = {x}
free(λy.t0) = free(t0)− {y}
free(t0#t1) = free(t0) ∪ free(t1)

free(n) = ∅
free(op t0 t1) = free(t0) ∪ free(t1)

In the λy.t0 case, the symbol − is the set difference operation.
We say that a symbol x appears free in a term a if x ∈ free(a). Prove by

induction that if x does not appear free in a, that for every term b, we have
a{b/x} = a.

5.4 Parallel substitution

In Figure 1, the substitution function takes the form substb,x(a), which substi-
tutes the term b for the variable x in a. However, what if we want to substitute
two variables at once? One approach is to simply perform the substitution oper-
ation twice. For example, the term substc,y(substb,x(a)) is obtained by taking
the term a, replacing x by b, then replacing y by c.

However, the issue with chaining two substitution operations is that it
matters which operation happens first. In general, it is not the case that
substc,y(substb,x(a)) is equal to substb,x(substc,y(a)), where the ordering of
substitution is flipped.

Exercise 31. Suppose x ̸= y, find an instantiation of a, b, and c such that
substc,y(substb,x(a)) ̸= substb,x(substc,y(a)). To construct the counterexam-
ple, it is useful to think about the case where b contains y as a free variable.

The notion of parallel substitution, on the other hand, allows us to describe
the operation of substituting multiple variables at once more naturally without
thinking about the order in which the variables are substituted as they all
happen at once.

There is nothing fundamentally wrong with single substitution. However,
in practice, I find parallel substitution much easier to work with, and it is easy

20

to recover single substitution from parallel substitution, but not the other way
around.

Definition 2 (Substitution map). We refer to the set of functions Symbols →
Λ as substitution maps. Often, we use the symbol ρ or γ to denote such functions.

Definition 3 (Identity substitutions). Recall that Symbols ⊆ Λ. We define

id : Symbols → Λ

id(x) = x

We refer to id as the identity substitution, which maps symbols to variables in
the lambda calculus.

Definition 4 (Renamings). A substitution map is a renaming if only maps
from symbols to variables. For example, the map id is a renaming.

There are different operations we can perform on a substitution map ρ. The
extension operator allows us to modify a single entry of the substitution map.

Definition 5 (Extension operator). Let ρ be a substitution map. Given x ∈
Symbols and a ∈ Λ, we define a new substitution map ρ{x 7→ a} as follows.

ρ{x 7→ a}(y) =

{
a if x = y

ρ(y) if x ̸= y

Let ρ be a substitution map, we define the parallel substitution function
substρ(a) recursively over the syntax of lambda terms in Figure 2.

substρ(x) = ρ(x)

substρ(λy.t0) = λy.substρ{y 7→y}(t0)

substρ(t0#t1) = substρ(t0)#substρ(t1)

substρ(n) = n

substρ(op t0 t1) = op substρ(t0) substρ(t1)

Figure 2: Parallel substitution

In the λ case, by modifying the substitution map from ρ to ρ{y 7→ y} when
making the recursive call, we ensure that the bound variable y doesn’t get
replaced by the parallel substitution operator.

We use the notation a{ρ} as a shorthand for substρ(a). We can easily
substitute the single term b for x by instantiating ρ with id{x 7→ b}, a function
that maps x to b, but every other symbol y ̸= x to y itself.

21

Exercise 32. Prove that a{id} = a.

Exercise 33. Prove that a{id{x 7→ b}} = a{b/x}. That is, the single substitu-
tion operator substb,x is really just a special instance of the parallel substitution
operator substρ with ρ = id{x 7→ b}.

Thus, from now on, we only think of single substitution as an instance of
parallel substitution. Instead of defining a{b/x} as a shorthand for substb,x(a),
we can define it as a shorthand for the parallel substitution a{id{x 7→ b}}.

The benefit of working with parallel substitution is that we can talk about
replacing multiple variables at once without any specific ordering. For example,
replacing x by b and y by c can be expressed by the substitution map id{x 7→
b}{y 7→ c}. Of course, we could have written the substitution map as id{y 7→
c}{x 7→ b}, but the following exercise shows that the order doesn’t really matter
as long as x ̸= y.

Exercise 34. By unfolding Definition 5, prove that ρ{x 7→ a}{y 7→ b} = ρ{y 7→
b}{x 7→ a} assuming that x and y are distinct symbols.

As a corollary, show that a{ρ{x 7→ a}{y 7→ b}} = a{ρ{y 7→ b}{x 7→ a}} if
x ̸= y.

Exercise 35. Consider the lambda term y#x where the symbols x ̸= y. Sim-
plify and compare the expressions ((y#x){(y#x)/x}){x/y} and (y#x){id{x 7→
(y#x)}{y 7→ x}}. The former has a single free vairiable y whereas the latter
has both x and y as its free variables.

Parallel substitution will become useful when we talk about type soundness
and proof by logical relation after we introduce a type system to our lambda
calculus. However, since our variables are still represented as symbols, our
naively defined substitution operation still fails to preserve the binding structure
of terms, as the following example shows.

Exercise 36 (Capturing of free variables). Consider the lambda term λy.(x#y)
where y ̸= x. First, show that (λy.(x#y)){y/x} = λy.(y#y).

Next, show that (λx.λy.(x#y))#y ⇝ λy.(y#y).
Explain why reducing from (λx.λy.(x#y))#y to λy.(y#y) is wrong, and

why it makes more sense to have (λx.λy.(x#y))#y ⇝ λz.(y#z) for any symbol
z ̸= y. You can use your intuition about function arguments and drawings of
the binding structure (i.e. arrows from variables to the location they refer to)
as part of your explanation.

To prevent a free variable x from being “captured” by a λx. . . . after perform-
ing substitution, PL researchers refine the substitution function into a capture-
avoiding substitution operator such that when performing a substitution over
a lambda term λx.a, the substitution operator first picks a fresh symbol z and
renames the lambda term into λz.(a{z/x}) before performing the substitution.
Thus, if the term we are replacing x with contains the symbol x, it would not be
bound by the λx form as we’ve replaced λx with λz for some z that has never
appeared before in the text.

22

Recall that the functions x 7→ x + 1 and z 7→ z + 1 are the same function.
Thus, the systematic renaming of bound variables do not change the meaning
of the function only serves the purpose of preserving the binding structure.

However, the capture-avoiding substitution operator is difficult to specify
formally. Instead, in next section, we give our encoding of binding structure a
final upgrade by introducing de bruijn representation with parallel substitution.

5.5 De Bruijn Representation

The de Bruijn representation requires us to formulate the syntax of the lambda
calculus slightly differently.

op ∈{Mult,Add}
n ∈N
x ∈N
t :=x | Lam t | App t t | op t t | Num n

The first difference is that the variables x are no longer symbols, but natural
numbers. The second difference is that the syntax for function abstractions no
longer contains a variable for the function argument; now it simply takes the
form Lam t, which we can also denote as λ.t. Since variables are now repre-
sented as numbers, we want to be able to distinguish between numbers repre-
senting variables and numbers representing numeric constants. We achieve that
distinction by explicitly tagging numbers with the ′Num symbol, so numeric
constants now take the form Num n. If we see a number on its own, then it
unambiguously represents a variable. For example, λ.0 is an identity function
whereas λ.Num 0 a constant function that always returns the number 0.

Without variables for functions arguments, how do we know which lambda
a variable is supposed to refer to? It turns out that the number contains all the
information we need to find corresponding lambda form. For example, given
λ.λ.x. We start from the variable x, and traverse toward the root of abstract
syntax tree and find the xth (0-indexed) closest λ. For example, λ.λ.0, in
nominal representation, corresponds to λx.λy.y, whereas λ.λ.1 correspond to
λx.λy.x.

In de Bruijn representation, the same number might refer to a different func-
tion argument depending on its location in the term. Consider the expression
λ.(0#(λ.0)). The first 0 refers to the first λ whereas the second 0 refers to the
second λ. In nominal representation, we can write this term as λx.(x#(λy.y)).

Likewise, different numbers might refer to the same function argument. For
example, the expression λ.(0#(λ.1)) corresponds to λx.(x#(λy.x)).

Exercise 37. Consider the following lambda terms in nominal representation.

• λx.x

• λy.y

23

• λx.λy.x

• λx.λx.x

• λx.λz.x

Write down their corresponding de Bruijn representation. Notice how some of
these expressions have the exact same de Bruijn representation.

Exercise 38. Convert the following terms from de Bruijn representation to their
corresponding nominal representation. Is the nonimal representation unique?

• λ.(λ.1#(0#0))#(λ.1#(0#0))

• λ.λ.0

What about free variables? In the exercises, we have only considered lambda
terms that do not contain free variables. However, what should be the de Bruijn
representation of λx.y where y ̸= x? What number should we pick for y? Of
course, one thing we know for sure is that the number must be greater than 0
since λ.0 represents the identity function λx.x. However, there is no information
about what happens outside the lambda terms.

Nevertheless, we can distinguish between variables that are bound and free.
A variable is free if it is too large to be bound to any of the λs and is bound
otherwise. Furthermore, we can tell which numbers refer to the same free vari-
able.

Given expressions 0 and 1, we ought to know that 0 and 1 refer to different
free variables. We can assume that there exists an infinite list of free variables
around. If a variable x is too large, then instead of seeking for more λs, we
continue to index into this infinite list. For example, the variable 0 refers to the
first position of the list, whereas the variable 1 refers to the second position of
the list.

Consider the expressions λ.1 and 0. The variable 1 and 0 should both refer
to the same free variable. Why? Because 1 needs to first leap over the λ that
wraps around it, after which we seek the first (i.e. 0th) available free variable.

Applying the idea we have discussed so far about free de Bruijn variables,
we can define a mapping between de Bruijn terms and nominal terms as long
as we pick a bijection F : N → Symbols. For example, if we have F (0) =′ x,
F (1) =′ y, and F (2) =′ z, then the de Bruijn term λ.2#0 would correspond
to the nominal term λx.y#x or λz.y#z, whereas the nominal term λx.z#x
would uniquely correspond to the de Bruijn term λ.3#0. Of course, we could
have picked the bijection F differently, in which case a de Bruijn term would
correspond to a different nominal term.

5.6 Renaming (de Bruijn)

In this section, we define the renaming function over de Bruijn terms.

24

Definition 6 (Renaming). We say that ξ is a renaming for de Bruijn terms if
it is a function of type N → N.

Definition 7 (Some useful renamings). We write ↑ as a shorthand for the
renaming that increments its input by 1.

We write id to denote the identity renaming that leaves its input unchanged.

Definition 8 (Extension (renaming)). Given a renaming ξ and a number x, we
define the renaming ξ : x as follows.

(ξ : x)(n) =

{
x if n = 0

ξ(n− 1) if n > 0

Definition 9 (Composition). Given two renamings ξ0 and ξ1, we can use the
usual function composition operator ◦ to obtain a new renaming ξ0 ◦ ξ1 such
that (ξ0 ◦ ξ1)(x) = ξ0(ξ1(x)).

Definition 10 (Lifting). We define the lifting operator ⇑ as follows.

⇑ ξ = (↑ ◦ξ) : 0

Exercise 39. In class, we define the lifting operator ⇑ as a function that satisfies
the following equations for each ξ.

⇑ ξ(x) =

{
0 if x = 0

1 + ξ(x− 1) if x > 0

Prove that the lifting operator defined in Definition 10 satisfies these equations.

The recursive definition of the renaming function is given below.

renξ(x) = ξ(x)

renξ(a#b) = renξ(a)#renξ(b)

renξ(λ.a) = λ.ren⇑ξ(a)

We use the shorthand a⟨ξ⟩ to denote renξ(a).

Exercise 40. Prove by induction over a that the following properties hold.

• a⟨id⟩ = a

• a⟨ξ0 ◦ ξ1⟩ = a⟨ξ1⟩⟨ξ0⟩

At a high-level, given a term a, the term renξ(a) is obtained by replacing
every free variable x of a with ξ(x).

However, the concept of free variables is quite tricky in de Bruijn representa-
tion. Similar to how two distinct numbers can refer to the same boudn variable
(e.g. the 0 and 1 in λ.0#(λ.1)), two distinct numbers can also refer to the same

25

free variable (e.g. the 0 and 1 in 0#(λ.1)). However, since the same free variable
can correspond to different numbers, which number should we pick for the free
variable? For example, in 0#(λ.1), the numbers 0 and 1 both refer to the first
free variable as the 1 needs to leap through the λ first. Should the free variable
of the term be 0 or 1? It turns out we always take the perspective of being
outside the lambda term, and therefore the only free variable of 0#(λ.1) is 0.

Let’s now formally define the free function for de Bruijn terms. We start
by defining the following auxiliary function, which will be useful in the λ case.

Definition 11 (Downshifting). Let A ⊆ N, we define ↓ A as follows.

↓ A = {x− 1 | x ∈ A, x > 0}

Note that ↓ A effectively removes the element 0 from A and decrements all other
numbers by 1.

We then define free recursively as follows.

free(x) = {x}
free(a#b) = free(a) ∪ free(b)

free(λ.a) =↓ free(a)

Exercise 41. Prove that free(λ.λ.(0 1)) = ∅ and free(λ.1 (λ.1 3)) = {0, 1}
and observe the effect of ↓ in the λ case. Try convincing yourself that the result
makes sense.

Exercise 42. Prove by induction over a that the following equality holds.

free(a⟨ξ⟩) = {ξ(x) | x ∈ free(a)}

Exercise 43 (A little challenging!). We want to show that if a is closed (i.e.
free(a) = ∅), then a⟨ξ⟩ = a for all ξ.

Try proving the statement by induction over a. If done correctly, you’ll
realize the induction hypothesis is not usable in the λ case and the proof won’t
actually go through. (If somehow you managed to prove it, then something
must have gone wrong!)

Instead, prove the following strengthened statement, which says if (∀x ∈
free(a), ξ(x) = x), then a⟨ξ⟩ = a.

5.7 Substitution (de Bruijn)

Definition 12 (Substitution maps). We say that ρ is a substitution map if it’s
a function of type N → Λ.

Note that every renaming is a special instance of a substitution map.

Definition 13 (Identity substitution). We use the same symbol id to represent
an identity substitution that maps each variable to itself.

26

Definition 14 (Extension). Given a substitution map ρ and a term a, we define
the extended substitution map ρ : a as follows.

(ρ : a)(x) =

{
a if x = 0

ρ(x− 1) if x > 0

Definition 15 (Composition (with renaming)). Given a renaming ξ, we write
renξ as the function (which has type Λ → Λ) a 7→ a⟨ξ⟩. Thus, we can compose
a renaming ξ and a substitution map ρ by writing the substitution map renξ ◦ρ,
which satisfies the equation (renξ ◦ ρ)(x) = ρ(x)⟨ξ⟩.

Definition 16 (Lifting). Given a substitution ρ, we overload the symbol ⇑ for
renamings and define the substitution ⇑ ρ as follows.

⇑ ρ = (ren↑ ◦ ρ) : 0

Exercise 44. Show that ⇑ ρ(x) =

{
0 if x = 0

ρ(x− 1)⟨↑⟩ if x > 0

Prove as a corollary that when ρ happens to be a renaming, there is no
ambiguity whether ⇑ refers to Definition 10 or Definition 16 as the results are
equal.

We now define the substitution function substρ(a) recursively over the syn-
tax of a.

substρ(x) = ρ(x)

substρ(a#b) = substρ(a)#substρ(b)

substρ(λ.a) = λ.subst⇑ρ(a)

Note that the definition of substρ closely mirrors the definition of renξ. We
use the shorthand a{ρ} to denote substρ(a).

Definition 17 (Single substitution). Similar to the parallel substitution oper-
ation for nominal terms, we can recover single substitution by composing the
identity substitution and the extension operator.

Let a and b be lambda terms. We write a{b} as a shorthand for a{id : b}.

We can now finally recover the small-step operational semantics using our
newly defined substitution operator.

(λ.a)#b⇝ a{b}
D0

a0 ⇝ a1

a0#b⇝ a1#b
D1

27

Exercise 45. Show that the following statements hold.

• ∀a, (λ.0)#a⇝ a.

• ∀a, (λ.λ.1)#a⇝ λ.(a⟨↑⟩).

• (λ.λ.1)#0#1⇝ 0

• (λ.λ.0)#0#1⇝ 1

• (λ.0#2)#0⇝ 0#1

For the second statement, explain why it makes sense that the result has a
shifted by the ↑ operator.

For the last statement, explain why the free variable 2 is decremented 1 and
why it would be wrong to leave it as 2.

Exercise 46. Consider the nominal term (λx.λy.x)#y. If we reduce naively, we
end up with the wrong term λy.y where the free variable y becomes captured.

Suppose we map the nominal free variable y to the free de Bruijn variable
0, confirm that the lambda term can be written as (λ.λ.1)#0.

Show that (λ.λ.1)#0 ⇝ λ.1. Explain why the ren↑ that appears in Defini-
tion 16 is crucial for avoiding the capturing of free variables.

Now that we have the definition of the substitution function, we can compose
two substitutions as follows.

Definition 18 (Composition). We define substρ := a 7→ a{ρ}. We can then
combine two substitution maps ρ0 and ρ1 by writing substρ0

◦ ρ1, which is a
new substitution that maps each variable i to ρ1(i){ρ0}.

For the following exercises, you will show that the operational semantics
respect substitution.

Exercise 47. Prove that if a⇝ b, then a{ρ}⇝ b{ρ}.

Exercise 48. Prove that if a⇝ b and a = a0⟨ξ⟩ for some a0 and ξ, then there
exists some b0 such that b = b0⟨ξ⟩ and a0 ⇝ b0.

The proof should proceed by induction over the derivation of a ⇝ b. You
need to be extra careful when writing down the induction hypotheses for the
cases.

6 The simply typed lambda calculus

Consider the following extended grammar of the lambda calculus with booleans.
For readability, we revert back to the nominal representation for now.

x ∈Symbol

t, a, b, c :=x | λx.t | t t | true | false | if t t t

28

Our operational semantics need to take into account the new boolean con-
structs.

if true b c⇝ b if false b c⇝ c

a0 ⇝ a1

if a0 b c⇝ if a1 b c

In the if a b c form, the term a is expected to step to a boolean, whereas b and
c correspond to the then and else branches respectively.

Consider the term if (λx.x) a b, where a function appears in the position
where a boolean value is expected, causing our operational semantics to get
stuck. In real world languages, this kind of stuck state correspond to run-time
errors. For example, in Python or Scheme, passing a function to an if statement
or expression would cause the program to crash.

In this section, we learn how to use a type system to specify the set of well-
behaved terms, which, when executed, will never step into one of those stuck
states.

Exercise 49. Given another example of a stuck term that involves the appli-
cation form and boolean values (true and false).

6.1 Nominal specification of the type system

A type system allows us to associate terms with their types, similar to how we
associate mathematical objects with the sets they belong to.

Types, similar to terms, are syntactic entities that are defined inductively.

τ,A,B :=bool | Arr τ τ

The symbol bool denotes the type for boolean expressions. The Arr τ0 τ1
denotes the type for functions that map expressions of type τ0 to expressions
of type τ1. We write τ0 → τ1 as a shorthand for Arr τ0 τ1, though it is
important to keep in mind that the→ here is just a piece of syntax and should be
distinguished from the arrow used for set-theoretic functions. In PL papers, it is
more common to simply write the grammar as follows with the understanding
that the symbols appearing in the grammar are syntax rather than semantic
objects from the metatheory (e.g. set theory or Rocq).

τ :=bool | τ → τ

It should be quite obvious that we can associate true and false to bool.
However, given a variable x, without further information, we are unable to
determine its type.

In mathematics, we are able to determine the set that a variable a belongs
to from a previous definition or declaration (e.g. “Suppose a ∈ N..”). In a
type system, we use a typing context to bookkeep the variables that have been
declared so far and their associated types.

29

The typing context is inductively defined as follows.

Γ :=· | Γ, x : A

In other words, a typing context is either an empty context ·, or an existing
context Γ extended with a variable x and its associated type A, which we denote
as Γ, x : A. Note that in Γ, x : A, the , and the : are both notations; the only
data required to extend a context is an existing context Γ, a variable x, and a
type A.

As a shorthand, we write the context ·, x : A, y : B, . . . as x : A, y : B, . . .,
omitting the · at the very beginning.

Under the typing context x : τ0, y : τ1, we can say that x has type τ0 and
y has type τ1. However, what if the context has the same variable appearning
twice? For example, what is type of x if the context is x : τ0, x : τ1? We always
favor the declaration closer the tail of the context. In this case, we relate x to
the type τ1, shawdoing the declaration x : τ0.

We can make the idea of variable lookup in a typing context precise by
defining the ternary relation x : A ∈ Γ, which holds precisely when x and A
appear in Γ without being shadowed by a later declaration.

x : A ∈ Γ, x : A

x ̸= y x : A ∈ Γ

x : A ∈ Γ, y : B

The x ̸= y side condition in the second rule prevents us from looking up further
if we have around found a declaration for it.

Exercise 50. Show that it is not the case that x : bool ∈ x : bool, x : bool →
bool

Exercise 51. Show that if x : A ∈ Γ and x : B ∈ Γ, then A = B. In other
words, the lookup relation can be viewed as a partial function that takes x and
Γ as inputs and returns a unique A as output if a declaration for x exists in Γ.

You can prove this statement by induction on either Γ or x : A ∈ Γ.

Now we have all the ingredients needed to specify the typing judgment Γ ⊢
a : A, a ternary relation that relates the term a to the type A under the typing
context Γ. Again, the ⊢ and : in Γ ⊢ a : A are notations and bear no special
meaning. The relation is defined inductively as follows, with the rule names
annotated on top of each rule.

T-Var
x : A ∈ Γ

Γ ⊢ x : A

T-Bool
a ∈ {true, false}

Γ ⊢ a : bool

T-If
Γ ⊢ a : bool Γ ⊢ b : A Γ ⊢ c : A

Γ ⊢ if a b c : A

T-Lam
Γ, x : A ⊢ a : B

Γ ⊢ λx.a : A → B

T-App
Γ ⊢ b : A → B Γ ⊢ a : A

Γ ⊢ b a : B

30

Exercise 52. Prove that · ⊢ λx.λy.x y : (bool → bool) → bool → bool.

Exercise 53. Let A, B, and C be arbitrary types. Find a lambda term of the
type (A → B) → (B → C) → A → C.

Exercise 54. Let A, B, and C be arbitrary propositions. Prove that if A → B
and B → C, then A → C.

Compare your proof of this exercise to the lambda term from the previous
exercise and convince yourself that the lambda term can be viewewd as a formal
encoding of the proof you have written for this exercise.

What should we expect from the typing relation? We can view the typing
relation as a way of carving out a set of well-behaved lambda terms that satisfy
some desired properties. These properties may vary depend on the use case. For
our simple system, we want to ensure that well-typed terms do not step into the
stuck state we have discussed informally at the beginning of this section. Here,
we make the notion of stuckness precise.

Definition 19 (Values). We say that a lambda term is a value if it is of the
form λx.a, true, or false.

Definition 20 (Stuck terms). A lambda term a is stuck if it is not a value and
there is no term b such that a⇝ b.

Our goal is to show the following proposition, which we refer to as the type
safety property.

Definition 21 (Type safety). Our language is type safe if given Γ ⊢ a : A and
a⇝∗ b, the term b is not stuck.

Exercise 55. Prove that the term (λx.x x) (λx.x x) can only step into itself
and therefore can never be in a stuck state.

The previous exercise shows that type safety says nothing about termination.
A language can include infinite loops and still be type safe.

Proving type safety using the nominal representation is quite painful. In
the next section, we present the type system using the de Bruijn representation
and prove the type safety result without the headache of dealing with named
variables.

31

